描述
且说上一周的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励
的时刻了!
小Ho现在手上有M张奖券,而奖品区有N件奖品,分别标号为1到N,其中第i件奖品需要need(i)张奖券进行
兑换,同时也只能兑换一次,为了使得辛苦得到的奖券不白白浪费,小Ho给每件奖品都评了分,其中第i件
奖品的评分值为value(i),表示他对这件奖品的喜好值。现在他想知道,凭借他手上的这些奖券,可以换到哪
些奖品,使得这些奖品的喜好值之和能够最大。
输入
每个测试点(输入文件)有且仅有一组测试数据。
每组测试数据的第一行为两个正整数N和M,表示奖品的个数,以及小Ho手中的奖券数。
接下来的n行描述每一行描述一个奖品,其中第i行为两个整数need(i)和value(i),意义如前文所述。
测试数据保证
对于100%的数据,N的值不超过500,M的值不超过10^5
对于100%的数据,need(i)不超过2*10^5, value(i)不超过10^3
输出
对于每组测试数据,输出一个整数Ans,表示小Ho可以获得的总喜好值。
5 1000
144 990
487 436
210 673
567 58
1056 897
2099
#include #include int best[555][111111]; int need[555], value[555]; int max(int a, int b) { return a > b ? a : b; } int main(void) { int i, j, n, m; scanf("%d%d", &n, &m); for(i = 1; i <= n; i++) { scanf("%d%d", &need[i], &value[i]); for(j = 0; j <= m; j++) { if(j < need[i]) best[i][j] = best[i - 1][j]; else best[i][j] = max(best[i -1][j], best[i -1][j - need[i]] + value[i]); } } printf("%d\n", best[n][m]); //system("pause"); }