- 博客(640)
- 收藏
- 关注
原创 AI+数据智能体的三大支点:数据治理、知识库和大模型
企业数字化转型面临三大隐形资产流失:数据混乱、知识孤岛和决策低效。智能决策闭环通过三大支点重塑企业竞争力:1)数据治理建立统一标准,某物流企业优化算法后节省千万成本;2)知识库沉淀企业经验,保险公司核保准确率提升15%;3)大模型即时分析决策,某电商转化率提升19%。三者融合形成"决策飞轮",推动企业从"体力型"向"智能体"跃迁,实现10倍速的市场响应能力。
2025-06-04 09:57:56
799
原创 DeepSeek发布最新论文,5大杀手锏让大模型训练、推理暴涨
全球著名开源大模型平台DeepSeek在huggingface 发布了,超强开源模型V3的论文。昨天,全球著名开源大模型平台DeepSeek在Huggingface发布了,超强开源模型V3的论文。主要从硬件架构和模型设计的双视角探讨如何在不牺牲性能的前提下实现更高效的大规模训练和推理以突破硬件瓶颈。
2025-06-04 09:51:56
504
原创 MCP(模型上下文协议)真的与零信任原则相悖吗?
MCP协议被认为与零信任原则相悖,主要体现在以下方面:1)其默认采用隐式信任模型,缺乏强制身份验证和持续授权机制;2)访问控制松散,权限管理宽泛;3)部分实现存在通信安全漏洞。与零信任"永不信任,始终验证"的核心原则相比,MCP当前的安全机制明显不足。然而研究表明,通过整合持续验证、最小权限、微分段等零信任要素,MCP正逐步向安全架构演进。未来MCP与零信任的深度集成将构建更安全的AI交互生态,包括实施即时访问控制、增强监控审计等功能,最终实现功能性与安全性的平衡。这种转变将为AI技术的企业级应用提供可靠的
2025-06-04 09:49:44
523
原创 深入了解如何通过 LM Studio 优化本地 LLM 性能
LMStudio是一款专为本地大语言模型设计的桌面工具,它简化了LLM在个人电脑上的部署和使用过程。文章介绍了LMStudio的三个核心优势:首先,它提供了一体化的本地LLM运行环境和直观的聊天界面,降低了技术门槛;其次,得益于与NVIDIA的合作,LMStudio整合了CUDA计算图优化、FlashAttention等性能加速技术;最后,软件提供免费跨平台支持,既适合普通用户直接交互使用,也支持开发者通过兼容OpenAI API的接口进行应用开发。文章还提供了优化本地LLM性能的实用建议
2025-06-04 09:40:14
739
原创 RAG与微调,大语言模型的“大脑升级”,该选哪条路?(小白科普)
RAG与微调是提升大语言模型(LLM)性能的两大核心技术,但适用场景不同。RAG通过实时检索外部动态知识库增强回答准确性,适合需要最新信息的场景;微调则通过特定领域数据训练提升专业能力,更适合专精任务。RAG保持模型通用性且更新便捷,微调可能损失部分通用性但专业度更高。实际应用中应根据需求特点选择,两者也可结合使用以获得更优效果。理解二者的核心差异和优缺点是技术选型的关键。
2025-06-04 09:37:22
859
原创 AI Agent 五大工作模式详解
本文系统阐述了AI智能体架构设计的五种核心工作模式:1)提示链模式通过任务分解与流水线执行处理复杂问题;2)路由模式动态选择最优处理路径;3)并行化模式实现多任务并发处理;4)协调者-工作者模式构建分层管控体系;5)评估者-优化者模式形成自我迭代闭环。每种模式均配有技术实现图例和典型应用场景,如旅行规划系统和AWS客服系统等。文章最后指出未来智能体架构将向动态模式切换、跨Agent学习和自我演进方向发展。这些模式为开发者构建高效AI系统提供了基础范式,需根据具体场景灵活组合应用。
2025-06-04 09:28:17
1011
原创 AI大模型踩过的坑,每一个都价值千万
训练大模型就像烹饪一道复杂的大菜。数据是食材,配比是调料,筛选是火候控制。光有好食材不行,还得会搭配、会调味、会控制火候。先导模型让你避免了"把一锅好菜炒糊"的风险,预训练配比确保了"营养均衡",后训练筛选保证了"精工细作"。这套组合拳下来,你的大模型才能在激烈的竞争中脱颖而出...现在,你还觉得训练大模型只是简单的"把大象装进冰箱"吗?
2025-06-04 09:23:36
805
原创 为什么非要做Agent?我用传统方法也能实现啊!
Agent技术虽在效率上不如传统编程直接,但其核心价值在于降低技术门槛,让非专业人士也能快速实现需求。通过压缩开发链条和智能理解意图,Agent满足了80%的"想吃热饭"级别的长尾需求。多Agent协作更展现出类似专业团队的智能互动能力。这种技术变革带来的不是程序员失业,而是将开发资源解放到更复杂问题上,同时让更多人获得技术创新参与权。正如历史上汽车取代马车的启示,Agent代表着一个更包容的未来发展方向。
2025-06-04 09:21:45
668
原创 RAG系列:解析优化 - 不同文件类型统一转换成Markdown
本文探讨了RAG系统中文件解析的优化方案,提出将各类异构文件(PDF、Word、Excel等)统一转换为Markdown格式的思路。Markdown能保留文档基本结构,去除冗余格式,显著降低系统复杂度。文章推荐使用开源工具如MinerU进行格式转换,并详细介绍了在CPU环境下安装配置MinerU的方法,包括环境搭建、模型下载和代码示例。通过将不同文件格式统一处理为Markdown,可简化后续文本处理流程,提高系统效率和可维护性。该方法为处理多格式文档提供了一种实用解决方案。
2025-06-04 09:19:05
782
原创 MCP原理与实战:下一代AI Agent的底层基建设计
MCP协议(模型上下文协议)是AI领域的新型"通用接口",旨在实现大模型与外部系统的标准化互联。与API、Agent等技术相比,MCP具有三大核心优势:1)专注大模型上下文管理,实现多步任务编排;2)采用被动服务模式,确保数据安全调用;3)简化开发流程,提升90%集成效率。该协议如同"智能档案管理员",能标准化连接企业系统,支持实时数据调用和权限管控。掌握MCP技术意味着站在AI应用发展的前沿,既能提升AI应用的实用性和安全性,又能简化开发流程,是推动AI落地的关键基建。
2025-06-04 09:11:40
876
原创 如何实现RAG与MCP集成
在人工智能技术不断发展的当下,RAG 与 MCP 的集成成为提升 AI 性能的关键路径。Agentic RAG 与 MCP 服务器的深度融合,通过知识检索为 AI 代理提供精准信息支撑,借助记忆与数据集成增强其情境感知能力,使 AI 系统从被动应答迈向主动决策。这一创新架构赋予 AI 研究员般的探索力、助手级的执行力与分析师的洞察力,不仅实现海量信息的高效调用,更能智能判断知识应用场景与时机,让 AI 真正成为兼具专业性与实用性的智能伙伴,开启智能交互的全新可能。
2025-06-02 21:59:22
694
原创 性能碾压GPT-4.1-mini!Mistral开源Devstral,还能在笔记本上跑
法国AI公司Mistral与AllHandsAI合作推出开源模型Devstral(240亿参数),专为解决实际软件工程问题设计。该模型在SWE测试中表现优异(46.8%得分),超越GPT-4.1-mini等模型,且支持本地部署(单块RTX4090或32GB Mac)。采用Apache2.0许可,允许商业使用,并通过API提供服务(0.1美元/百万输入Token)。其突出特点是在真实代码库问题处理上优于大型模型,成为开发者新选择。
2025-05-28 10:17:10
783
原创 必看!手把手教你玩转Dify的3大核心工具!
Dify平台通过工具扩展大模型能力,主要分为内置工具、自定义工具和工作流三种类型。工具赋予LLM连接外部世界的能力,可完成复杂任务和系统集成。内置工具可通过插件市场安装,自定义工具则需配置HTTP接口并按OpenAPI标准导入。开发者可灵活运用这些工具模块,实现搜索、计算、邮件发送等多样化功能。
2025-05-28 10:13:38
878
原创 LLM的 “自信陷阱”:上下文幻觉如何侵蚀 AI 信任?
在高风险场景中,单纯依靠技术手段难以完全消除幻觉风险,必须引入人工审核环节。例如,在法律文书生成、医疗处方开具等场景中,AI生成的内容必须经过专业人员的审核和确认,确保其准确性和合规性。一、当AI自信地给出错误答案在数字技术飞速发展的今天,大语言模型(LLMs)正以前所未有的速度渗透到我们生活的方方面面。从智能客服到医疗诊断,从金融分析到法律文书,这些模型凭借其强大的语言理解和生成能力,似乎正在重塑人类与信息交互的方式。然而,在其光鲜亮丽的表现背后,一个隐蔽而危险的问题正悄然浮现——上下文幻觉(Cont
2025-05-28 10:08:42
646
原创 如何使用Google Gemini模型完成计算机视觉任务?
本文介绍了如何利用Google Gemini多模态AI模型完成计算机视觉任务。主要内容包括:Gemini 2.5 Pro的特性(支持图像和文本输入、推理能力及指令跟随);数据注释工具(如YOLO注释器)在构建定制模型时的关键作用;以及四个具体任务(对象检测、推理测试、图像字幕生成和OCR)的代码实现步骤。文章详细说明了从环境设置、API配置到结果可视化的全流程,并对比了Gemini通用方案与定制训练模型的适用场景。通过实践演示,展示了Gemini在计算机视觉应用中的强大潜力。
2025-05-28 10:04:59
535
原创 Claude 4如何思考?资深研究员回应:RLHF范式已过,RLVR已在编程/数学得到验证
RL研究,基于 Andy Jones 的《棋盘游戏的缩放比例定律》等研究成果二十六探索模型是否真正学习了新功能,还是只是在更好地发现这些功能。可解释性,有太多“唾手可得的成果”,需要更多人探索模型内部运作的机制和原理。性能工程,在不同的硬件(TPU、Trainium、Incuda)上进行高效实现是展示原始能力的好方法,并且可以带来工作机会。这也有助于建立关于模型架构的直觉。
2025-05-28 09:55:39
614
原创 基于图的 RAG 方法总结(GraphRAG、 GraphReader、LightRAG、HippoRAG和KAG)
本文系统分析了五种基于图结构的RAG方法:GraphRAG通过层次社区实现多粒度理解,适合全局分析;GraphReader采用智能体探索长文档;HippoRAG模拟海马体记忆机制优化多跳检索;LightRAG通过双层检索平衡效率与动态适应性;KAG整合符号推理解决专业领域问题。各方法在文本理解、推理能力和适用场景上各具特色:GraphRAG和GraphReader擅长长文本处理,HippoRAG优化多跳检索,LightRAG侧重实时响应,KAG专精复杂推理。选择需综合考虑任务需求、数据特性及成本,如法律领域
2025-05-28 09:53:47
1712
原创 LLM能理解数学吗?最新研究揭露大模型数学推理的致命缺陷
研究揭示AI数学能力评估存在严重缺陷:传统方法仅关注答案正确性,忽略了推理过程的质量。最新提出的MAPLE评估框架通过分析解题步骤中的7类错误,发现主流AI模型在复杂数学题中普遍存在逻辑混乱、方法错误等问题。研究表明,随着题目难度提升,AI不仅错误率增加,推理质量也显著下降,且不同数学领域表现差异明显。这项研究颠覆了传统评估方式,指出未来AI发展需重视推理过程的可靠性,而非仅追求答案正确率,为构建更智能的AI系统指明了方向。
2025-05-28 09:49:57
830
原创 LiteLLM:用于统一大模型访问的开源网关
LiteLLM 不仅仅是开源项目,更是一种用于对多提供商大模型部署进行规模化部署的全面解决方案。通过简化API交互并添加诸如动态故障转移和成本分析等强大功能,LiteLLM使开发者能够构建稳健的生成式AI应用程序,而不必分神于基础设施的管理复杂性。LiteLLM将Python SDK与代理服务器的优势相结合,使其既适合小型团队进行AI实验,又适合运行关键任务负载的大型企业。凭借活跃的社区支持和BerriAI团队的持续更新,LiteLLM有望在未来几年内成为统一大模型接入的首选方案。
2025-05-28 09:47:51
727
原创 DeepSeek 技术解析:LLM 训练中的强化学习算法
本文系统介绍了DeepSeek提出的群组相对策略优化(GRPO)技术及其理论基础。文章从强化学习基础概念入手,重点解析了强化学习(RL)和基于人类反馈的强化学习(RLHF)在大语言模型训练中的核心作用。通过对比基于价值、基于策略和Actor-Critic三种强化学习范式,深入分析了TRPO和PPO算法的优势与不足。GRPO创新性地采用分组结构和相对优势估计,在保持训练稳定性的同时消除了对独立价值网络的需求,显著降低了训练资源消耗。该方法通过比较同组内采样动作的奖励来估计优势函数,使GRPO成为完全基于策略的
2025-05-28 09:44:55
779
原创 Dify、n8n、扣子、Fastgpt、Ragflow到底该怎么选?超详细指南来了
经过这次全方位的对比分析希望大家对Dify、Coze、n8n、FastGPT和RAGFlow这五个平台有了更清晰的认识。没有绝对完美的工具,只有最适合当前需求和发展阶段的选择。
2025-05-28 09:42:37
910
原创 补全llm知识体系的地基:Transformer
本文介绍了Transformer模型的结构和工作流程。模型分为编码器和解码器两部分:编码器负责将输入序列(如"我爱你")通过分词、嵌入、位置编码和多头注意力等步骤转换为语义表征;解码器则基于编码结果逐步生成目标序列(如"I love you")。详细说明了自注意力机制、残差连接、前馈网络等关键组件的作用,并对比了Encoder-only、Encoder-Decoder和Decoder-only三种架构的差异。最后解释了模型的训练(通过掩码机制预测下一个词)和推理过程(自回归生成序列),以及不同架构适用的场景
2025-05-28 09:34:11
621
原创 RAG 架构实战:Fixed-Size Chunking(固定切块) 解析
本文深入解析RAG系统中固定切块策略(Fixed-Size Chunking)的核心逻辑与实现。固定切块按预设长度机械分割文本,具有实现简单、处理高效的优势,特别适合对实时性和成本敏感的场景。但其也存在上下文碎片化和缺乏适应性的缺陷。文章通过Python代码示例演示了固定词数切分的实现方法,并指出在实际应用中需注意语义割裂等问题。固定切块虽看似简单,但在工程实践中表现稳定,是构建RAG系统的有效基础策略。
2025-05-27 17:58:32
839
原创 深度解析大模型技术演进脉络:RAG、Agent与多模态的实战经验与未来图景
大模型技术通过检索增强生成(RAG)、智能体(Agent)与多模态技术的协同演进,正在重塑AI与现实的交互边界。RAG通过动态知识融合突破大模型的静态知识边界,Agent借助自主决策与多任务协同能力重构人机协作范式,多模态大模型则依托跨模态语义理解技术解锁复杂场景的落地潜力。这些技术不仅在医疗诊断、金融风控、智能制造等领域催生从效率革新到业务重构的行业级变革,还推动了AI从单一任务处理向复杂系统集成的演进。未来,大模型将向多模态知识图谱、具身智能和神经符号系统升级,实现感知-认知-决策-执行的完整闭环
2025-05-20 18:00:22
593
原创 字节最新大模型秘籍:只挑能有推理潜力的数据训练!1.3B模型无需标签自动挑选
字节Seed团队最新研究成果AttentionInfluence,提出了一种无需训练和标签的数据选择方法,通过1.3B模型为7B模型筛选数据,显著提升了模型的推理和代码生成能力。该方法利用预训练语言模型中的注意力机制,特别是检索头,通过屏蔽重要检索头创建“弱”模型,计算与原始“强”模型的损失差异,从而评估数据对推理的影响。实验结果显示,使用AttentionInfluence选择的数据训练的7B模型在多个基准测试中表现优异,如MMLU、GSM8K和HumanEval等,证明了该方法在提升模型性能方面的有效性
2025-05-19 18:01:33
711
原创 RAG架构综述:探寻最适配RAG方案
在实际项目开发中,选择合适的RAG(Retrieval-Augmented Generation)类型是确保项目成功的关键。RAG技术通过整合外部知识源检索与模型生成能力,使语言模型能够基于真实世界的信息生成更准确、可靠的回答。RAG技术不断演进,衍生出多种架构类型,如标准RAG、纠正型RAG、推测型RAG、融合型RAG、代理型RAG、自我型RAG、自适应RAG等,每种都针对特定场景和需求进行了优化。开发者需要根据项目的具体需求、数据特点以及性能要求,选择最适合的RAG类型。例如,标准RAG适合对响应时间要
2025-05-19 17:59:40
674
原创 十张图带您极简认识 MCP「可视化指南」
MCP(Modular Communication Protocol)是一种标准化的通信协议,类似于USB-C接口,用于连接AI应用程序与外部数据源和工具。它由三个核心组件组成:MCP主机、MCP客户端和MCP服务器,共同确保AI应用与外部系统之间的安全通信。MCP客户端在连接时发送初始请求以了解服务器功能,服务器则响应其可用工具、资源和提示。与传统API不同,MCP采用动态方法,允许服务器功能更新而无需客户端代码修改,从而提高了灵活性和适应性。这种设计使得AI应用能够更高效地集成和利用外部数据与工具,增强
2025-05-19 17:58:09
1012
原创 最新!OpenAI:GPT-5将实现大统一,Codex最佳实践是这样的
Codex-1 目前仅适配 ChatGPT UI,不直接开放 API;团队正努力让代理能通过 API 调用,并支持更多 Git 托管与工作流工具
2025-05-19 17:55:28
547
原创 LLM又曝致命缺陷:根本不会看时钟!博士惊呆,准确率不及50%
AI在处理简单日常任务时的显著认知缺陷,如读取时钟和判断日期。尽管AI在复杂任务上表现出色,但在这些基础任务上的准确率却低得惊人,读取时钟的准确率仅为38.7%,判断日历日期的准确率只有26.3%。研究指出,AI在处理需要空间推理和精确逻辑的任务时表现不佳,尤其是在面对少见现象如闰年或复杂日历计算时。这项研究强调了AI在训练数据中需要更多针对性示例,并重新思考如何处理逻辑推理与空间感知相结合的任务。研究提醒我们,尽管AI强大,但在涉及感知和精确推理的任务中,仍需人类介入和严格测试。
2025-05-19 17:52:56
751
原创 Ollama平替!LM Studio本地大模型调用实战
本文介绍了如何通过LMStudio工具在本地启动并调用AI模型服务。首先,在“开发者”选项卡中选择模型,并设置暴露的端口(默认1234),启用CORS以便与网页应用或其他客户端工具对接。启动服务后,控制台会显示运行日志和访问地址。用户可以通过curl命令快速验证服务器是否可访问,并调用聊天功能进行对话。调用时需提供完整的对话历史记录,且可以选择流式传输或累积完整响应。流式传输适用于较长的内容生成或运行速度较慢的模型,而累积完整响应则需等待所有预测结果生成后再返回。
2025-05-15 18:02:17
727
原创 Mac上跑大模型必看:彻底搞懂GGUF与MLX的区别和联系
GGUF(原名GGML)是一种高效的模型存储格式,特别适用于量化大语言模型,如4-bit、5-bit等低精度模型,广泛用于本地化部署中小型LLM(如LLaMA系列)。其优点包括内存占用小、支持多种推理后端(如llama.cpp)。MLX是Apple开发的机器学习框架,专为苹果设备优化,支持GPU加速,可加载PyTorch模型进行本地推理。GGUF和MLX可以结合使用,先将标准模型转换为GGUF格式,再转换为MLX格式,最终在苹果设备上实现高性能、低内存占用的本地推理
2025-05-15 17:59:21
880
原创 AI Agent 破局:MCP 与 A2A 定义安全新边界
模型上下文协议(MCP)是由Anthropic提出的开放标准,旨在为AI模型与外部工具之间建立安全、双向的连接。在MCP出现之前,AI要集成工具可能需要针对每个工具进行定制开发,缺乏统一标准,集成效率低,而MCP协议提供了一个可插拔、可扩展的框架,允许AI无缝对接数据源、文件系统、开发工具、Web浏览器等外部系统,使得AI的能力更容易被拓展。而在2025年4月9日,谷歌云正式发布了Agent2Agent(A2A)协议,这是首个专为AI代理互操作性设计的开放标准。
2025-04-14 21:37:21
1045
原创 Agno框架介绍:用于构建多模态智能体的轻量库
构建TriSage与Marketing Analyst营销分析师智能体。如果要求高速、低内存占用、多模态功能以及灵活的模型/工具选项,请选择Agno。如果偏向基于流程的逻辑或结构化执行路径,或者已经与LangChain生态系统紧密关联,请选择LangGraph。从实践角度来看,Agno已经为生产级工作负载做好了准备,尤其是对大规模构建智能体系统的团队而言。它的实时性能监控、对结构化输出的支持以及插入内存+向量知识的能力,使其成为能够快速构建强大应用程序的出色平台。
2025-04-14 21:34:12
1106
原创 基于大模型的 RAG 核心开发——详细介绍 DeepSeek R1 本地化部署流程
前言自从 DeepSeek 发布后,对 AI 行业产生了巨大的影响,以 OpenAI、Google 为首的国际科技集团为之震惊,它的出现标志着全球AI竞争进入新阶段。从以往单纯的技术比拼转向效率、生态与战略的综合较量。其影响已超越企业层面,涉及地缘政治、产业政策与全球技术治理,它彻底改变“美国主导创新、中国跟随应用”的传统格局,形成多极化的技术权力分布。DeepSeek 的开源性彻底打破了 OpenAI 等公司通过 API 接口调用,依赖 token 计费的单一规则。
2025-04-14 21:30:05
736
原创 大模型应用的能力分级
根据微软的研究,RAG 的能力可以按照搜索的复杂程度分为四个层次:显式事实查询、隐式事实查询、可解释的推理查询和隐式的推理查询。无论处于哪个层次,外部数据来源都起着关键作用。对大模型应用的能力分级就像给学生打分一样,能让我们更清楚它的本事有多大。能力分级能帮我们设定目标,知道AI现在能干什么,未来还要学什么。有了统一的分级方式,大家就能公平比较不同AI的水平,推动技术进步。同时,不同分级的AI适合干不同的活儿,能帮我们找到最合适的帮手。另外,能力分级让普通人更容易理解AI的能力,避免过度期待或担心。
2025-04-10 19:15:37
922
原创 超实用!Prompt程序员使用指南,大模型各角色代码实战案例
提示词(Prompt)是输入给大模型(LLM)的文本指令,用于明确地告诉大模型你想要解决的问题或完成的任务,也是大语言模型理解用户需求并生成准确答案的基础。因此 prompt 使用的好坏,直接决定了大模型生成结果的质量(是否符合预期)。提示词(Prompt)是输入给大模型(LLM)的文本指令,用于明确地告诉大模型你想要解决的问题或完成的任务,也是大语言模型理解用户需求并生成准确答案的基础。因此 prompt 使用的好坏,直接决定了大模型生成结果的质量(是否符合预期)。图片。
2025-04-10 19:13:40
854
原创 RAG实战 | 向量数据库LanceDB指南
提供单机服务,可以直接嵌入到应用程序中支持多种向量索引算法,包括Flat、HNSW、IVF等。支持全文检索,包括BM25、TF-IDF等。支持多种向量相似度算法,包括Cosine、L2等。与Arrow生态系统紧密集成,允许通过 SIMD 和 GPU 加速在共享内存中实现真正的零拷贝访问。向量搜索是一种在高维空间中搜索向量的方法,主要是将原始数据通过嵌入模型得到向量,然后通过向量相似度算法计算向量之间的距离,从而找到最相似的向量。
2025-04-10 19:09:54
1123
原创 多模态模型结构与训练总结
最近看了很多多模态大模型相关的论文,今天对模型结构和训练进行一个简单总结,整体来看,各家的模型结构基本上一致,无非是一些模型细节上的改变。模型训练方式也大差不差,基本上都是预训练+微调。整体的模型结构了解了,后续就开始更新模型的各个模块单元了,首先从模态编码器上继续进行一个系统的学习,希望能帮助到大家。
2025-04-10 19:03:17
1079
原创 智能体 | 基于ReAct框架:构建极简智能体实践的探索
基于ReAct的方式,手动制作了一个最小的Agent结构(其实更多的是调用工具)。基于ReAct的方式,手动制作了一个最小的Agent结构(其实更多的是调用工具)。
2025-04-10 18:59:30
1071
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人