让AI“开窍”的艺术:机器学习

首先,我们需要了解一下,什么是机器学习?

机器学习其实是人工智能的一个领域,本质上是研究怎样让计算机像人一样进行学习,获取新的知识和技能,从而不断改善自身的性能。

1.机器学习vs传统编程

在传统的编程过程中,计算机的工作主要是根据人们给它的数据和规则去进行计算,最终得到答案。

程序员需要提前写好所有规则,让计算机能够依照规则进行执行,例如要让计算机判断图片上的是猫还是狗,就得一条条写清楚猫和狗的特点(规则),但是这么一条条要全部写出来,程序员表示臣妾做不到啊~

于是机器学习反其道而行,我们不告诉计算机具体的规则,而是给计算机大量的数据,让计算机在数据中总结规律,从而能去运用规律。

我们给计算机看几千张猫的照片,不用去给它解释猫的耳朵有点像三角形,有胡须,还会喵喵叫等等,只需要计算机通过这些照片(数据)去总结规律,自然就能认识猫了。

传统编程:程序员写规则→程序执行→得到结果

机器学习:给程序数据→程序学习→自动得出规则

传统编程和机器学习的它们的本质区别就是:谁在制定规则?

传统编程适用于规则明确、逻辑清晰的问题;机器学习适用于规则复杂、难以人工总结的场景。

2.机器学习的三大学习方式

机器学习的核心学习方式主要分为三类:监督学习、无监督学习、强化学习。

  • 监督学习:有标准答案的刷题模式

监督学习是机器学习中最常见的学习方式之一,核心逻辑和我们上学刷题如出一辙——有明确题目、有标准答案,学完就能直接“应试”。

它的训练数据都带有“标签”,相当于“输入内容+正确结果”的配套套餐,模型就像认真刷题的学生,通过反复学习海量“题目(输入特征)+答案(标签)”,慢慢摸清两者之间的对应规律(映射关系),看到A特征,就能对应B结果

  • 无监督学习:没有标准答案的探索模式

与监督学习不同,无监督学习的输入数据都是不带标签的原始素材。

模型得像侦探一样,自己从海量数据里找到隐藏的规律。

它的核心任务是挖掘数据的内在结构:哪些数据长得像可以归为一类?数据的核心特征是什么?有没有偏离常规的“异类”?

这些全都靠模型自主发现。

  • 强化学习:边试错边优化的闯关升级模式

强化学习的核心是在互动中成长,既没有监督学习的固定标准答案,也不像无监督学习那样没有明确的目标,它更像是一款闯关游戏,模型就是“玩家”,环境则是“游戏地图”,有明确的“通关目标”,还有即时的奖惩机制。

模型会在环境中不断尝试行动,做对了(靠近目标)能拿到奖励,做错了(偏离目标或遇到障碍)则得到惩罚。

通过一次次试错,模型可以慢慢优化行动策略,从“处处碰壁”到“精准避坑”,最终找到最快通关的最佳路径。

3.机器学习的学习N步曲

机器学习的过程不是一步到位的,它也有一套明确步骤的成长流程,要从菜鸟变大神,AI也需要经历“找素材、选方法、勤练习、验成果、上岗实战”的完整路径。

机器学习的核心过程可以概括为5步:数据准备→模型选择→训练优化→评估测试→部署应用,本质是“用数据喂模型、用反馈调整模型、用实战验证模型”的闭环。

1. 数据收集与预处理

学习的第一步就是收集学习素材(数据),如果模型要使用监督学习方式训练,那么就要收集“输入+标签”的配套数据,如果模型要使用无监督学习方式进行训练,那么就要收集原始无标签的数据。

当然,收集到的数据还需要进一步的加工和整理(数据清洗、数据预处理等),以便模型能够读懂。

2. 选择学习方式和算法

模型就像是一个学习工具,不同的模型,擅长处理不同任务类型的问题,比如有的擅长处理图片,有的擅长处理文字。

模型的选择取决于任务类型和数据特征,在训练时,需要根据任务的性质和数据的特点来选择模型的学习方式和算法。

文档君整理了一个表格,三种方式到底怎么选,一目了然~

学习方式适用场景常见算法
监督学习(刷题)要预测“是/否”、“A类/B类”或具体数值,选它!
  • 线性回归

    逻辑回归

    支持向量机(SVM)

    决策树

无监督学习(探索)要找相似组、简化数据、找异常,选它!
  • K-均值聚类

    PCA

    孤立森林

强化学习(闯关)要AI自主决策、边试错边成长,选它!
  • Q-learning

    DQN

    PPO

3. 训练优化

模型训练是通过数据不断优化模型参数的过程。

当把整理好的数据喂给模型,并选择学习方式和算法后,还需要在模型的学习过程中不断纠错调优,让模型在训练数据上学习规律(监督学习学“输入-标签”的映射;无监督学习挖数据结构;强化学习根据奖惩情况调整策略)。

4. 评估测试

模型完成学习后也需要进行模拟考试,看看模型能不能举一反三。

在评估测试中,我们需要用没学过的新数据测试模型效果,并用具体的指标判断效果(比如准确率、误差值等),如果测试结果不达标,那么模型还得继续回炉重造。

5. 部署应用

模型通过测试后就可以正式上岗了,把训练好的模型嵌入产品中(如APP、系统、机器人),模型就可以实时处理新数据了。

当然,上岗之后的模型还需要持续监控它的表现,并用新数据迭代优化模型,保证模型的长期有效性。

END
看完 AI 的 “成长流程”,你觉得哪个步骤最像你学习或工作中的 “关键环节”?

 如何学习大模型?

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

😝有需要的小伙伴,可以扫描下方二v码免费领取【保证100%免费】🆓

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值