最新!OpenAI:GPT-5将实现大统一,Codex最佳实践是这样的

在这场 1 小时的 AMA 中,Codex 核心研发和研究负责人围绕 :为什么先推云端代理、CLI 为何用 TypeScript、未来多语言绑定与 IDE 插件、GPT-5 与 Operator 的整合、定价与 API 计划、安全沙箱、最佳实践 等问题给出了清晰路线图。

Codex发布后,OpenAI Codex在Reddit举行了AMA(Ask Me Anything)活动

图片

在这场 1 小时的 AMA 中,Codex 核心研发和研究负责人围绕 :为什么先推云端代理、CLI 为何用 TypeScript、未来多语言绑定与 IDE 插件、GPT-5 与 Operator 的整合、定价与 API 计划、安全沙箱、最佳实践 等问题给出了清晰路线图:

Codex-1 目前是「云端沙箱 + ChatGPT 原生入口」的研究预览,面向大仓库 + 测试驱动工作流效果最佳;

CLI 走开源 + API 计费,本体将在 Plus/Pro 长期集成并提供“弹性”付费;

短期不会给代理外网,但已支持 --approval-mode full-auto;

他们希望 10 年内实现“按规格即可落地可靠软件”,并把 Codex、Operator、Deep Research、Memory 等工具融合为一套完整代理体系

详细 Q&A

Codex产品定位与长期愿景

1 .为什么先做云端

本地 CLI 因单机算力与线程受限,只适合轻量任务;云端可并行跑多个容器并隔离风险,是先发形态

10 年愿景:给出“合理规格说明”即可在可观时间内得到可靠软件;云端并行 + 沙箱是实现路径。

2 .GPT-5 与 Codex、Operator 等工具是什么关系?

GPT-5 是下一代“统合”模型,目标是把 Codex、Operator、Deep Research、Memory 等工具融合成“一体化桌面代理”,真正替用户在电脑上执行任务

CLI 设计与多语言计划

之所以选 TypeScript,是作者 @pourlefou 最熟悉且擅长做终端 UI;很快将提供高性能引擎并做多语言绑定

Codex使用场景与最佳实践

最擅长:大仓库 + 明确单元测试;拆小任务优于一句“帮我造一个 App”

Ask → Code 工作流:先用 Ask Mode 解析设计文档自动拆任务,再交给 Code Mode;AGENTS.md 里写测试/格式化/提交模板可显著提升成功率

Ask vs Code 边界:当前由用户显式切换,两种模式各跑独立容器,后续将探索带“记忆”的自适应流程并支持多 repo

任务上限:ChatGPT 版默认允许单任务跑满一小时,以保障解决复杂问题

安全模型与联网策略

代理获得运行时后即断网,只用本地 repo 与预加载文件,确保可审计输出;未来会逐步开放“安全联网”

CLI 已支持 --approval-mode full-auto,但仍处于云端沙箱中——放权与安全会一起前进

接入方式与计费

CLI:开源,需要正常 API 计费;不会因为你是 Pro 就免 token

ChatGPT 内的 Codex:

Pro/Team/Enterprise 用户两周内享“慷慨配额”;Codex 将长期集成 Plus/Pro,并提供灵活付费选项(不限量+按需)

正在面向 Pro 用户逐步灰度;移动端支持“在网页里用”,App 原生入口“很快上线”

API 与生态路线

Codex-1 目前仅适配 ChatGPT UI,不直接开放 API;团队正努力让代理能通过 API 调用,并支持更多 Git 托管与工作流工具

 

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓ 

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

 三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

  • L1.1 人工智能简述与大模型起源
  • L1.2 大模型与通用人工智能
  • L1.3 GPT模型的发展历程
  • L1.4 模型工程
  • L1.4.1 知识大模型
  • L1.4.2 生产大模型
  • L1.4.3 模型工程方法论
  • L1.4.4 模型工程实践
  • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

  • L2.1 API接口
  • L2.1.1 OpenAI API接口
  • L2.1.2 Python接口接入
  • L2.1.3 BOT工具类框架
  • L2.1.4 代码示例
  • L2.2 Prompt框架
  • L2.3 流水线工程
  • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

  • L3.1 Agent模型框架
  • L3.2 MetaGPT
  • L3.3 ChatGLM
  • L3.4 LLAMA
  • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

  • L4.1 模型私有化部署概述
  • L4.2 模型私有化部署的关键技术
  • L4.3 模型私有化部署的实施步骤
  • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 下方二v码领取🆓↓↓↓ 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值