问题提出:给出一张图,上面有一些点,点与点之间有边相连,要求从起点出发,到达终点所需要花费的最短路程。
输入输出格式如下:
第一行输入两个整数n,m。
接下来的m行,每行输入三个数字u,v,w。
表示在u到v之间存在一条无向边边,边的权值为w。
每次答案输出一个数字,表示从一号顶点出发,走到n号顶点的最短路径。如果不存在则输出-1.
由于有向图和无向图的做法相似,本文提到如无特别标注均为无向图。
input
3 3
1 2 2
2 3 3
3 1 1
output
1
目录
可以将此类问题分为单源和多源。单源意为从一个点出发,求这个点到所有顶点的最短路。多源则可以求出任意两个顶点的最短路。我们先从单源开始讨论。
一、Dijkstra算法(单源最短路)
Dijkstra算法是基于贪心策略的,算法的大致思想如下:先定义一个dist数组储存起点到每一个点(目标点用数组的下标来表示)的最短路径,dist的每一项初始值为无穷大,意为着在不知道边的情况下起点到每一个点都是不可达的。开始将起点加入集合并标记,尝试更新与起点相连的顶点的距离,更新之后再从dist数组中取与起点最近的点加入集合并标记,用这个点继续尝试更新起点到其他点的距离。算法的时间复杂度为:
C++实现如下:
#include <bits/stdc++.h>
using namespace std;
const int mx=205;
int n,m,mp[mx][mx],dis[mx],vis[mx];
void Dijkstra(){
for(int i=1;i<=n;i++)
if(mp[1][i])
dis[i]=mp[1][i];
dis[1]=0;
vis[1]=1;
for(int i=1;i<=n;i++){
int k,tmp=0x3f3f;
for(int j=1;j<=n;j++) //每次取出离起点最近的点编号和距离
if(!vis[j]&&dis[j]<tmp)
k=j,tmp=dis[j];
vis[k]=1;
for(int j=1;j<=n;j++) //尝试更新
if(!vis[j]&&dis[j]>dis[k]+mp[k][j])
dis[j]=dis[k]+mp[k][j];
}
}
int main()
{
while(cin>>n>>m&&n){
memset(dis,0x3f3f,sizeof dis);
memset(vis,0,sizeof vis);
memset(mp,0x3f3f,sizeof mp);
for(int i=0;i<m;i++){
int a,b,c;
cin>>a>>b>>c;
mp[a][b]=mp[b][a]=min(mp[a][b],c); //加边去重边
}
Dijkstra();
cout<<dis[n]<<endl;
}
}
我想可能有的同学会有疑问:为什么Dijkstra的贪心策略是正确的呢?我在此可以提出一个非常简单的理解。
在上面的图中,从A到C有两种选择,一种是直接到C,一种是经过一个(或者多个)点到C。假设我们现在认为A到C的距离是最短的,打算将他加入最短路径了(即把这个点确定下来,不再更新),那么你是否有过一个疑问,为什么不会出现后面再找出一条通过其他点的边,使得A经过点B到达C的距离更小呢?这显然是不可能的。因为我们在确定下这条边的时候所采用的策略就是寻找离A(起点)最近的点。A到达B的距离必然大于A到达C的距离,因此在不出现负权边的情况下AC显然小于AB+BC。这点同时也解释了Dijkstra为什么不能处理负权边,因为按照Dijkstra的策略算法在处理到C是离起点最近就会将AC这条边固定下来。假设BC<0,则AC是有可能大于AB+BC的。
二、Dijkstra算法的堆优化
上面的算法不仅思想容易理解,实现也非常简单。整个算法是 量级的当n接近1e5时,算法就会超时。我们每次在取边的时候都必须使用一个循环,这个开销是可以优化的。我们可以用堆来维护取到起点最短距离的点这个过程,只要每一次取走堆顶就可以了。用邻接表来代替邻接矩阵,进一步优化算法。算法的时间复杂度为:
#include <bits/stdc++.h>
using namespace std;
typedef pair<int,int> PII;
const int mx=1e6+5;
int n,m,idx,e[mx],w[mx],ne[mx],h[mx],dis[mx],vis[mx];
void add(int a,int b,int