最短路问题(Dijkstra,Bellman_Ford,SPFA,Floyd,Johnson)

本文详细介绍了最短路问题的几种经典算法,包括Dijkstra算法及其堆优化、Bellman_Ford算法、SPFA算法、Floyd算法和Johnson算法。通过实例解析了算法思想、适用场景和C++实现,适用于无负权边的图论问题。
摘要由CSDN通过智能技术生成

问题提出:给出一张图,上面有一些点,点与点之间有边相连,要求从起点出发,到达终点所需要花费的最短路程。

输入输出格式如下:

第一行输入两个整数n,m。

接下来的m行,每行输入三个数字u,v,w。

表示在u到v之间存在一条无向边边,边的权值为w。

每次答案输出一个数字,表示从一号顶点出发,走到n号顶点的最短路径。如果不存在则输出-1.

由于有向图和无向图的做法相似,本文提到如无特别标注均为无向图。

input

3 3

1 2 2

2 3 3

3 1 1

output

1

目录

一、Dijkstra算法(单源最短路)

 二、Dijkstra算法的堆优化

三、Bellman_Ford算法

四、SPFA算法(Bellman_Ford的队列优化)

五、Floyd算法(多源最短路)


可以将此类问题分为单源和多源。单源意为从一个点出发,求这个点到所有顶点的最短路。多源则可以求出任意两个顶点的最短路。我们先从单源开始讨论。

一、Dijkstra算法(单源最短路)

Dijkstra算法是基于贪心策略的,算法的大致思想如下:先定义一个dist数组储存起点到每一个点(目标点用数组的下标来表示)的最短路径,dist的每一项初始值为无穷大,意为着在不知道边的情况下起点到每一个点都是不可达的。开始将起点加入集合并标记,尝试更新与起点相连的顶点的距离,更新之后再从dist数组中取与起点最近的点加入集合并标记,用这个点继续尝试更新起点到其他点的距离。算法的时间复杂度为:{\color{Red} O(n^{2})}

C++实现如下:

#include <bits/stdc++.h>
using namespace std;
const int mx=205;
int n,m,mp[mx][mx],dis[mx],vis[mx];
void Dijkstra(){
    for(int i=1;i<=n;i++)
        if(mp[1][i])
            dis[i]=mp[1][i];
    dis[1]=0;
    vis[1]=1;
    for(int i=1;i<=n;i++){
        int k,tmp=0x3f3f;
        for(int j=1;j<=n;j++)  //每次取出离起点最近的点编号和距离
            if(!vis[j]&&dis[j]<tmp)
                k=j,tmp=dis[j];
        vis[k]=1;
        for(int j=1;j<=n;j++)  //尝试更新
            if(!vis[j]&&dis[j]>dis[k]+mp[k][j])
                dis[j]=dis[k]+mp[k][j];
    }
}
int main()
{
    while(cin>>n>>m&&n){
        memset(dis,0x3f3f,sizeof dis);
        memset(vis,0,sizeof vis);
        memset(mp,0x3f3f,sizeof mp);
        for(int i=0;i<m;i++){
            int a,b,c;
            cin>>a>>b>>c;
            mp[a][b]=mp[b][a]=min(mp[a][b],c);  //加边去重边
        }
        Dijkstra();
        cout<<dis[n]<<endl;
    }
}

 我想可能有的同学会有疑问:为什么Dijkstra的贪心策略是正确的呢?我在此可以提出一个非常简单的理解。

 在上面的图中,从A到C有两种选择,一种是直接到C,一种是经过一个(或者多个)点到C。假设我们现在认为A到C的距离是最短的,打算将他加入最短路径了(即把这个点确定下来,不再更新),那么你是否有过一个疑问,为什么不会出现后面再找出一条通过其他点的边,使得A经过点B到达C的距离更小呢?这显然是不可能的。因为我们在确定下这条边的时候所采用的策略就是寻找离A(起点)最近的点。A到达B的距离必然大于A到达C的距离,因此在不出现负权边的情况下AC显然小于AB+BC。这点同时也解释了Dijkstra为什么不能处理负权边,因为按照Dijkstra的策略算法在处理到C是离起点最近就会将AC这条边固定下来。假设BC<0,则AC是有可能大于AB+BC的。


 二、Dijkstra算法的堆优化

上面的算法不仅思想容易理解,实现也非常简单。整个算法是 n^{2}量级的当n接近1e5时,算法就会超时。我们每次在取边的时候都必须使用一个循环,这个开销是可以优化的。我们可以用堆来维护取到起点最短距离的点这个过程,只要每一次取走堆顶就可以了。用邻接表来代替邻接矩阵,进一步优化算法。算法的时间复杂度为:{\color{Red} O(mlogn)}

#include <bits/stdc++.h>
using namespace std;
typedef pair<int,int> PII;
const int mx=1e6+5;
int n,m,idx,e[mx],w[mx],ne[mx],h[mx],dis[mx],vis[mx];
void add(int a,int b,int 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值