AI深度学习/神经网络方法
文章平均质量分 93
(1)经典网络解析:线性分类器、全连接神经网络、AlexNet、Vgg、GoogleNet、Resnet、Yolo、Transformer、扩散模型 可能涉及到代码和理论讲解,一般手撕即代码讲解,理论部分讲解不做特殊说明
(2)经典任务:目标检测、强化学习、语义分割等
(3)深度学习
Qodicat
哈嘿!AI野生探险家,一起探索AI世界的无限可能
有任何问题欢迎给我留言
展开
-
【前沿模型解析】一致性模型CM 1 | 离散时间模型到连续时间模型数学推导
通过泰勒级数展开,我们将。原创 2024-05-06 23:21:14 · 1219 阅读 · 0 评论 -
【前沿模型解析】潜在扩散模型 2-3 | 手撕感知图像压缩 基础块 自注意力块
同ResNet一样,注意力机制应该也是神经网络最重要的一部分了。想象一下你在观看一场电影,但你的朋友在给你发短信。虽然你正在专心观看电影,但当你听到手机响起时,你会停下来查看短信,然后这时候电影的内容就会被忽略。这就是注意力机制的工作原理。在处理输入序列时,比如一句话中的每个单词,注意力机制允许模型像你一样,专注于输入中的不同部分。模型可以根据输入的重要性动态地调整自己的注意力,注意自己觉得比较重要的部分,忽略一些不太重要的部分,以便更好地理解和处理序列数据。具体来说,是通过q,k,v实现的。原创 2024-04-09 20:26:51 · 1147 阅读 · 0 评论 -
【前沿模型解析】潜在扩散模型 2-2 | 手撕感知图像压缩基础块上下sample块
这是因为这个网络在设计的过程中,尽量维持卷积核尺寸大小统一且是奇数(这里是3),所以假设我们直接用卷积核自带的填充,则默认是对称填充,则会导致不能整除而出错。最后输出尺寸大小为(公式 $ \frac{特征图长或宽+2*填充尺寸-卷积核尺寸}{步长}+1$)这时候我们只需要填充一侧(非对称填充)填充完后,尺寸大小是129。这里注意一点,我们在实现过程中,用了非对称的填充。这里的上采样方式比较简单,通过插值实现的。上采样即改变特征图大小为原本的2倍。下采样,即改变特征图的尺寸。方式二的话是没有参数的。原创 2024-04-09 20:24:57 · 1004 阅读 · 0 评论 -
【前沿模型解析】潜在扩散模型 2-1 | 手撕感知图像压缩 基础块ResNet块
我们可以选择直接开到目的地,也可以选择在途中设置几个“中转站”,但是中转站多了有可能会丢失最终目的地的信息,中途有好玩的就被吸引了,所以我们有时候要直接开车前往目的地,避免一些信息的丢失或遗忘。是因为BN在Batch_size比较小的时候,表现很差,而我们在图像生成的实际任务中,由于分辨率比较大,所以Batch_size往往比较小。残差结构应该是非常重要的基础块之一了,你肯定会在各种各样的网络模型结构里看到残差结构,他是非常强大的~不是用的传统的批归一化BN,而是用的组归一化GN。原创 2024-04-06 23:19:04 · 1015 阅读 · 0 评论 -
【前沿模型解析】潜在扩散模 1 | LDM第一阶段-感知图像压缩总览
首先最重要的是网络结构本身复杂,再者代码也不容易看懂,LDM代码是通过包含着大量的动态导入包,Pytorch_lighting框架实现,不是我们所熟悉的pytorch框架,因而会对代码阅读造成更大的困难~AE距离生成图像就差一步,想一想,如果我们编码后的向量服从某一个规律,比如服从正态分布,那么这时候从这个正态分布随机采样一个向量,就可以生成图片了,这时候还可以生成一些多样的原本没有的图片。的了,是量子化的,也就是说,只能是某些特定的离散的小数,比如1.1,1.2,1.3 不存在中间态。原创 2024-04-06 23:16:44 · 2336 阅读 · 0 评论 -
【深度学习拾遗】四种归一化方式对比:| LayerNorm,BatchNorm,InstanceNorm,GroupNorm
归一化技术可以很好地,缓解梯度消失/爆炸问题,并有助于更快地收敛,也是一种正则化技术防止过拟合实际中会看到好多归一化比如BatchNorm,LayerNorm,GroupNorm,InstanceNorm。原创 2024-03-13 22:18:59 · 5455 阅读 · 1 评论 -
手撕Transformer(三)| 基础Transformer整体结构代码解析,从宏观到微观
首先Transformer最初被用在NLP的任务上,我们从经典的翻译任务上入手首先介绍翻译任务的背景,翻译任务是从一种语言到另一种语言,本质上是一个序列到一个序列的过程比如“I like apples”到“我喜欢苹果”的过程,是英语到中文那么每一种语言都有一个词表,比如英语(有300万个单词)那么词表大小就是300万,中文有九千多个汉字,那么词表大小就是九千多,从英语到中文的过程,英语是源语言(src),中文是目标语言(tgt),反之中文到英文的过程,中文是源语言,英文是目标语言。原创 2024-02-25 16:25:31 · 1555 阅读 · 0 评论 -
手撕Transformer(二)| Transformer掩码机制的两个功能,三个位置的解析及其代码
Transformer的掩码机制是非常重要的三个位置,两个功能。原创 2024-02-25 16:09:41 · 3666 阅读 · 0 评论 -
ChatGLM的Trainer模块解析
Trainer类为什么这样比较好Trainer是一个简单但功能完备的PyTorch训练和评估循环,针对🤗 Transformers进行了优化。原创 2024-02-20 22:46:36 · 1092 阅读 · 0 评论 -
手撕扩散模型(一)| 训练部分——前向扩散,反向预测代码全解析
三大模型VAE,GAN, DIffusion扩散模型 是生成界的重要模型,但是最近一段时间扩散模型被用到的越来越多的,最近爆火的OpenAI的Sora文生视频模型其实也是用了这种的方式,因而我打算系统回顾扩散系列知识,并注重代码的分析,感兴趣可以关注这一系列的博客,先介绍基础版本的,之后介绍扩散进阶的相关知识。扩散模型很多的讲解上来会讲解很多的数学,会让人望而却步,但其实扩散在实际使用的时候并不复杂,我会先从代码的角度告诉大家怎么实操,再介绍数学推理。原创 2024-02-20 22:41:34 · 1161 阅读 · 0 评论 -
手撕Transformer(一)| 经典Positional_encoding 用法and代码详解
本节我们主要介绍Transformer的重要的第一部分我会非常注重代码的解析~因为那是我最初学习的痛苦的来源,希望你们不受这些痛苦折磨哈哈哈。原创 2024-02-19 23:44:33 · 2663 阅读 · 2 评论 -
【模型微调】| 各类微调模型总结 P-Tuning,Prefix,P-tuning v2,LoRA
微调大模型方法最全综述各种各样的微调模型在最近两三年很火爆,想要去讲明白这些方法并不容易~但是我还是想尝试一下,尽可能将这些微调模型以一个清晰的架构呈现出来。原创 2024-02-01 20:31:06 · 2436 阅读 · 0 评论 -
【经典网络解析(十)】 循环神经网络 1 | RNN结构解析,代码实现
batch_first输入数据的形式,默认是 False,就是这样形式,(seq(num_step), batch, input_dim),也就是将序列长度放在第一位,batch 放在第二位。对于RNN,可以分为单向RNN,和双向RNN,其中单向的是只利用前面的信息,而双向的RNN既可以利用前面的信息,也可以利用后面的信息。第一个苹果和第二个苹果的概念是不一样的,第一个苹果是红彤彤的苹果,第二个苹果是苹果公司的意思。同时只有记忆能力是不够的,处理后的信息得储存起来,形成“新的记忆”原创 2024-01-16 12:03:37 · 1518 阅读 · 0 评论 -
强化学习基础 | 介绍特点、基本要素、组成、智能体
强化学习基础 | 介绍特点、基本要素、组成原创 2023-11-02 22:17:28 · 418 阅读 · 0 评论 -
【深度学习拾遗】深度学习环境 | Linux下安装,卸载,查看pytorch版本
Linux下pytorch环境问题原创 2023-10-13 20:56:59 · 1245 阅读 · 0 评论 -
【深度学习经典任务】目标检测 YOLOv3 | 核心主干网络,特征图解码,多类损失函数详解
YOLOv3的全解析,涉及主干网络,特征图解码,损失函数等原创 2023-10-11 10:47:35 · 1293 阅读 · 0 评论 -
【经典网络解析(九)】Transformer为什么如此有效 | 通用建模能力,并行
Transformer优势简析原创 2023-10-10 22:07:36 · 1368 阅读 · 0 评论 -
【深度学习经典任务】目标检测 YOLOv2解析 | 批归一化 锚 主干网
YOLOv2的改进。原创 2023-10-04 22:29:02 · 437 阅读 · 0 评论 -
【深度学习经典任务】目标检测|边框检测框转换,交并比计算 代码实现
目标检测交并比实现函数 边界框转换原创 2023-10-02 19:13:44 · 295 阅读 · 0 评论 -
【经典网络解析(九)】 transformer | 自注意力、多头、发展
经典网络解析(四) transformer | 自注意力、多头、位置编码、层归一化原创 2023-09-30 10:11:22 · 703 阅读 · 0 评论 -
【经典网络解析(八)】 生成模型VAE | 自编码器、变分自编码器|有监督,无监督
变分自编码器等等系列操作原创 2023-09-30 09:48:50 · 472 阅读 · 0 评论 -
【神经学习拾遗】神经网络可视化 | 梯度上升,可视化工具,风格转移
神经网络可视化,梯度上升,可视化工具,风格转移原创 2023-09-29 10:54:10 · 594 阅读 · 0 评论 -
【深度学习经典任务】目标检测 |单目标,多目标 非极大值抑制等
单目标识别,多目标识别,非极大值抑制,yolo等原创 2023-09-27 20:29:32 · 1972 阅读 · 0 评论 -
【深度学习经典任务】 语义分割、实例分割 | 全卷积、滑动窗口
语义分割,实例分割,全卷积解析原创 2023-09-26 18:11:30 · 874 阅读 · 0 评论 -
【经典网络解析(七)】 ResNet | 残差模块,为什么残差模块有效,基本结构
ResNet残差模块全解析,为什么ResNet如此有效?原创 2023-09-25 22:14:16 · 5005 阅读 · 0 评论 -
【经典网络解析(六)】GoogleNet | Inception块,1*1卷积核,辅助分类器 整体结构代码
GoogleNet网络全解析,Inception块,小卷积核原创 2023-09-24 17:45:14 · 451 阅读 · 0 评论 -
【经典网络解析(五)】Vgg | 块的设计思想,代码,小卷积核
Vgg块的设计思想,代码实现,小卷积核优点原创 2023-09-23 16:22:24 · 435 阅读 · 0 评论 -
【经典网络解析(四)】AlexNet逐层解析 | 代码、可视化、参数查看!
AlexNet的经典网络解析,每一层内容,代码,可视化原创 2023-09-23 11:23:18 · 1355 阅读 · 0 评论 -
【经典网络解析(三)】卷积操作 | 边界填充、跨步、多输入输出通道、汇聚池化
深度学习修炼(三)卷积操作 | 边界填充、跨步、多输入输出通道、汇聚池化原创 2023-09-21 22:38:54 · 1748 阅读 · 1 评论 -
【经典网络解析(二)】全连接神经网络 | Softmax,交叉熵损失函数 优化AdaGrad,RMSProp等 对抗过拟合 全攻略
深度学习全连接神经网络,Softmax操作,交叉熵损失函数,优化AdaGrad等方法原创 2023-09-20 20:35:27 · 1119 阅读 · 0 评论 -
【经典网络解析(一)】线性分类器 | 权值理解、支撑向量机损失、梯度下降算法通俗理解
神经网络基础笔记,线性分类器以及最初的一些损失函数,优化算法等原创 2023-02-20 21:47:03 · 1913 阅读 · 0 评论 -
计算机视觉发展历史
了解计算机视觉发展历程,不同年代的人们对于计算机视觉的探索原创 2023-02-04 19:20:35 · 2827 阅读 · 0 评论