62.不同路径

题干

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?
在这里插入图片描述
例如,上图是一个7 x 3 的网格。有多少可能的路径?

说明:m 和 n 的值均不超过 100。

示例 1:

输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右

示例 2:

输入: m = 7, n = 3
输出: 28

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/unique-paths
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题解

从左上角走到右下角,被一步只有两种走法,向下或是向右。这个题具有最优子结构,为什么说它符合最优子结构呢?每个点走到终点的路径数=该点右侧点走到终点的路径数+该点下侧点走到终点的路径数,两个子问题之间没有相互制,是互相独立的。

这个题具有重复子问题,因为肯定有点的右侧点也是别的点的下侧点,所以这道题应使用动态规划解决。
在这里插入图片描述
那么,既然知道了这是个动态规划问题,就要思考如何列出正确的状态转移方程?

先确定「状态」,也就是原问题和子问题中变化的变量。唯一的状态就是位置坐标m,n。

然后确定「选择」并择优,也就是对于每个状态,可以做出什么选择改变当前状态。具体到这个问题,就是移动方向。

状态转移方程:
F ( m , n ) = { 0 , m<0||n<0 1 , m==0&&n==0 F ( m − 1 , n ) + F ( m , n − 1 ) , m>0&&n>0 F(m,n) = \begin{cases} 0, & \text{m<0||n<0} \\ 1, & \text{m==0\&\&n==0} \\ F(m-1,n)+F(m,n-1), & \text{m>0\&\&n>0} \end{cases} F(m,n)=0,1,F(m1,n)+F(m,n1),m<0||n<0m==0&&n==0m>0&&n>0

方法一:暴力递归(超时)

public static int uniquePaths(int m, int n) {
        if (m ==0 && n==0)
            return 1;
        if (m<0 || n<0)
            return 0;
        int ret = 0;
        for (int i = m; i>=0; i--)
        {
            for (int j = n; j>=0; j--)
            {
                ret += uniquePaths(i-1,j-1);
            }
        }
        return ret;
    }

方法一:动态规划-自顶向下

public static int uniquePaths(int m, int n) {
        HashMap<List<Integer>,Integer> map = new HashMap<List<Integer>,Integer>();
        return dp(map, m, n);
    }
    public static int dp(HashMap<List<Integer>,Integer> map, int m, int n)
    {
        if (m ==0 && n==0)
            return 1;
        if (m<0 || n<0)
            return 0;
        List<Integer> key = new ArrayList<Integer>();
        key.add(m);
        key.add(n);
        if (map.containsKey(key))
            return map.get(key);

        int ret = 0;
        for (int i = m; i>=0; i--)
        {
            for (int j = n; j>=0; j--)
            {
                ret += dp(map,i-1,j-1);
            }
        }
        map.put(key, ret);
        return ret;
    }

方法一:动态规划-自下向上
二位数组dp存放的是到终点的距离,dp[3][2]:m=3,n=2的位置到终点的路径个数。

public static int uniquePaths3(int m, int n) {
        int[][] dp = new int[m][n];
        //边界置一,这些位置到终点路径都是一
        for (int i = 0; i < n; i++)
            dp[0][i] = 1;
        for (int i = 0; i < m; i++)
            dp[i][0] = 1;

        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
            	//状态转移方程
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        //因为数组0开头,所以返回的是m-1,n-1
        return dp[m - 1][n - 1];
    }
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值