目标和

题干

给定一个非负整数数组,a1, a2, …, an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。

返回可以使最终数组和为目标数 S 的所有添加符号的方法数。

示例 1:

输入: nums: [1, 1, 1, 1, 1], S: 3
输出: 5
解释: 

-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3

一共有5种方法让最终目标和为3。

注意:
1.数组的长度不会超过20,并且数组中的值全为正数。
2.初始的数组的和不会超过1000。
3.保证返回的最终结果为32位整数。

使用深度优先搜索

class Solution 
{
    public int count=0;
	public int findTargetSumWays(int[] nums, int S) 
	{
        
        dfs(nums,0,S,0,'+');
		dfs(nums,0,S,0,'-');
		return count;
    }
	private void dfs(int[] nums, int i, int S, int temp,char c) 
	{
		if(c=='-')
		{
			temp=temp+(-1*nums[i]);
		}
		else 
		{
			temp=temp+nums[i];
		}
		
		if(temp==S && i==nums.length-1)
		{
			this.count++;
			return;
		}
		if(i<nums.length-1)
		{
			dfs(nums,i+1,S,temp,'+');
			dfs(nums,i+1,S,temp,'-');
		}
	}    
}
//leetcode上最快的
class Solution {
    public int findTargetSumWays(int[] nums, int S) {
        //原问题等同于:找到nums一个正子集和一个负子集,使得总和等于target。
        //找到nums的一个子集P,使得sum(P) = (target + sum(nums))/2
        int sum =0;
        for(int num:nums)
            sum += num;
        if(sum<S || (S+sum)%2 != 0)
            return 0;
        return subsetSum(nums, (S+sum)/2);
    }
    public int subsetSum(int []nums, int s){  //以s这个数为和的子集有多少个
        int []dp= new int[s+1];
        dp[0]=1;  //以0为和的子集有一个,是空集
        for(int num:nums)
            for(int i=s;i>=num;i--)
                dp[i]+=dp[i-num];
        return dp[s];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值