题干
给定一个非负整数数组,a1, a2, …, an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。
示例 1:
输入: nums: [1, 1, 1, 1, 1], S: 3
输出: 5
解释:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
一共有5种方法让最终目标和为3。
注意:
1.数组的长度不会超过20,并且数组中的值全为正数。
2.初始的数组的和不会超过1000。
3.保证返回的最终结果为32位整数。
使用深度优先搜索
class Solution
{
public int count=0;
public int findTargetSumWays(int[] nums, int S)
{
dfs(nums,0,S,0,'+');
dfs(nums,0,S,0,'-');
return count;
}
private void dfs(int[] nums, int i, int S, int temp,char c)
{
if(c=='-')
{
temp=temp+(-1*nums[i]);
}
else
{
temp=temp+nums[i];
}
if(temp==S && i==nums.length-1)
{
this.count++;
return;
}
if(i<nums.length-1)
{
dfs(nums,i+1,S,temp,'+');
dfs(nums,i+1,S,temp,'-');
}
}
}
//leetcode上最快的
class Solution {
public int findTargetSumWays(int[] nums, int S) {
//原问题等同于:找到nums一个正子集和一个负子集,使得总和等于target。
//找到nums的一个子集P,使得sum(P) = (target + sum(nums))/2
int sum =0;
for(int num:nums)
sum += num;
if(sum<S || (S+sum)%2 != 0)
return 0;
return subsetSum(nums, (S+sum)/2);
}
public int subsetSum(int []nums, int s){ //以s这个数为和的子集有多少个
int []dp= new int[s+1];
dp[0]=1; //以0为和的子集有一个,是空集
for(int num:nums)
for(int i=s;i>=num;i--)
dp[i]+=dp[i-num];
return dp[s];
}
}