连续减法运算

以下是简单的减法运算,可以自行修改。

package test;

import java.util.Scanner;

public class SubtracitonQuizLoop {
public static void main(String[] args){
	//定义初始量
	Scanner input = new Scanner(System.in);
	long startTime = System.currentTimeMillis();
	
	//主体
	System.out.print("您要练习几道题呢? ");
	int numbers = input.nextInt();
	while(numbers > 0){
		int a = (int)(Math.random()*100);
		int b = (int)(Math.random()*100);
		//排序,大的放前面
		if(a < b){
			int temp;
			temp = a;
			a = b;
			b = temp;
		}
		int c = a - b;
		System.out.print("What is " + a + "-" + b + "? ");
		int answer = input.nextInt();
		//判断值是否正确
		if(answer == c){
			System.out.println("You are correct!");
		}
		else{
			System.out.println("You answer is wrong.");
		}
		numbers --;
		System.out.println();
	}
	
	//结算时间并输出
	long finishTime = System.currentTimeMillis();
	System.out.print("Test time is " + (finishTime - startTime)/1000 + " second.");
}
} 

在这里插入图片描述

### 图像减法运算在计算机视觉中的应用 图像减法运算是指两个输入图像对应像素值相减得到一个新的输出图像的过程。这种操作广泛应用于多个领域,特别是在背景去除、运动检测和缺陷检测等方面具有重要作用[^1]。 #### 背景去除 在一个固定的场景中,当存在移动物体时,可以通过拍摄两幅不同时间点的图片并执行减法运算来突出显示这些变化部分。具体来说,一幅图像是事先采集好的静态背景模型,另一幅则是当前时刻含有前景对象的画面。两者做差之后能够有效地分离出动态成分,从而实现对目标的有效跟踪或者识别。 #### 运动检测 利用连续帧之间的差异来进行运动分析也是常见的做法之一。通过对视频序列相邻帧实施逐像素级别的减法计算,可以获得反映物体位移情况的新图像数据集。这种方法不仅有助于监控系统的实时响应能力提升,在交通流量统计等领域同样有着不可替代的价值。 #### 缺陷检测 工业生产线上经常需要检验产品表面是否存在瑕疵等问题。借助于标准模板与待测样本间的对比分析——即所谓的“匹配减”,可以快速定位异常区域的位置及其特征描述,进而辅助质量控制环节做出精准判断。 ### 使用Halcons实现图像减法运算的方法 为了完成上述任务,Halcon 提供了一个名为 `diff_image` 的算子用于执行图像间简单的减法规则: ```cpp * 减去两张灰度级图像 gen_rectangle1 (Row, Column, Row + Height, Column + Width, Region) dev_display (Region) read_image (Image, 'standard') reduce_domain (Image, Region, ImageReduced) copy_channel (ImageReduced, ImageCopy) diff_image (ImageReduced, ImageCopy, Result, 0) ``` 这段代码片段展示了如何创建矩形ROI(感兴趣区),读取原始图像文件,并对其进行裁剪处理以便后续操作;接着复制通道以获得相同尺寸但独立存储的数据副本;最后调用 `diff_image()` 来获取最终的结果图像,其中第四个参数代表偏置量设置为零表示不做任何调整直接求出差分结果。 对于其他编程环境下的实践指导,比如基于 Python 和 OpenCV 库的情况,则可通过如下方式达成相似目的: ```python import cv2 import numpy as np # 加载要比较的第一张图片 img1 = cv2.imread('image1.jpg', 0) # 加载第二张用来作减法运算的对象图片 img2 = cv2.imread('image2.jpg', 0) # 执行减法运算 result = cv2.subtract(img1, img2) cv2.imshow("Result", result) cv2.waitKey(0) cv2.destroyAllWindows() ``` 此段脚本说明了怎样导入必要的模块,加载源素材(这里假设都是单通道灰度模式),再经由内置函数 `subtract()` 完成核心算法流程,直至展示所得成果为止[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值