451E:Devu and Flowers
题意简述
求
∑ni=1xi=s
的整数解的个数。
其中
xi∈[0,fi]
输出答案对
109+7
取模的结果
数据范围
1≤n≤20
1≤s≤1014
1≤fi≤1012
思路
容斥原理。
首先假设如果所有的
fi
都没有限制的情况。
根据无限多重集合的组合数那么答案即为
Csn+s−1
我们需要从这个答案中减去不合法的情况。
不合法的情况即为
xi>fi
的情况。
设
Ai
为
xi>fi
的方案。
|Ai|=Cs−(fi+1)n+s−1−(fi+1)
相当于我们预先放好这
fi+1
个元素。
同理
|Ai⋂Aj|=Cs−(fi+1)−(fj+1)n+s−1−(fi+1)−(fj+1)
根据容斥原理答案即为
Csn+s−1−∑1≤i≤n|Ai|+∑1≤i<j≤n|Ai⋂Aj|−...
(省略)
我们可以通过状态压缩表示每个状态。
预处理每个状态需要预先放好几个元素。
最后一遍扫描来统计答案。
时间复杂度
O(2nn)
代码
#include<cstdio>
using namespace std;
const int p=1000000007;
int n,lim;
int num[1100000];
long long s,ans;
long long f[30],inv[30],sum[1100000];
long long comb(long long n,long long m)
{
if (m<0)
return 0;
long long ret=1;
for (long long i=m+1;i<=n;i++)
ret=ret*(i%p)%p;
for (int i=1;i<=n-m;i++)
ret=ret*inv[i]%p;
return ret;
}
int main()
{
scanf("%d%I64d",&n,&s);
for (int i=0;i<n;i++)
scanf("%I64d",&f[i]);
inv[1]=1;
for (int i=2;i<=n+1;i++)
inv[i]=(inv[p%i]*(p-p/i))%p;
lim=(1<<n)-1;
for (int i=0;i<=lim;i++)
for (int j=0;j<n;j++)
if (i&(1<<j))
{
sum[i]+=f[j]+1;
num[i]++;
}
for (int i=0;i<=lim;i++)
if (num[i]%2)
ans=(ans-comb(s+n-1-sum[i],s-sum[i])+p)%p;
else
ans=(ans+comb(s+n-1-sum[i],s-sum[i]))%p;
printf("%I64d",ans);
}