首先考虑无限制的情况,则它就相当于 求Sigma(li)=s的方案,用隔板法可以得 C(s + n -1 , n - 1)。
假设只有两个花瓶,
则 容斥 :
无限制 - 花瓶1超限制花瓶2无限制 - 花瓶1无限制花瓶2超限制 + 花瓶1,2均超限制
即
C(s + n - 1,n - 1) - C(s - f1 - 1 + n - 1,n - 1) - C(s - f2 - 1 + n - 1,n - 1) + C(s - f1 - 1 - f2 - 1 + n - 1, n - 1)。
之所以 减去 fi + 1,因为超限制是必须至少取 fi + 1,即这 fi + 1已经确定分给 花瓶i了。
推广 (注意:时刻防爆long long, rt=rt*(n-i)会爆。。。。)
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <stack>
#include <vector>
#include <cstring>
#include <queue>
#define msc(X) memset(X,-1,sizeof(X))
#define ms(X) memset(X,0,sizeof(X))
typedef long long LL;
using namespace std;
const int mod=1e9+7;
LL f[22];
LL fac[22];
LL powmod(LL a,LL b)
{
LL rt=1ll;
a%=mod;
while(b){
if(b&1) rt=rt*a%mod;
b>>=1;
a=a*a%mod;
}
return rt;
}
LL cal(LL n,LL m)
{
LL rt=1;
for(int i=0;i<m;i++)
rt=(n-i)%mod*rt%mod;
return rt;
}
int main(int argc, char const *argv[])
{
int n;LL s,res=0ll;
scanf("%d%I64d",&n,&s);
for(int i=0;i<n;i++)
scanf("%I64d",f+i);
fac[0]=1;
for(int i=1;i<=20;i++)
fac[i]=fac[i-1]*i%mod;
LL inv=powmod(fac[n-1],mod-2);
for(int k=0;k<(1<<n);k++)
{
LL tmp=s;int e=1;
for(int i=0;i<n;i++)
if(k&(1<<i)) e=-e,tmp-=f[i]+1;
if(tmp>=0)
res=(res+e*cal(tmp+n-1,n-1)*inv%mod)%mod;
}
printf("%I64d\n",res<0?res+mod:res );
return 0;
}