斐波那契数列:
递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N)*
一般递归方法:
import time
n = int(input("请输入一个整数"))
def fab(n):
if n<1:
print('输入有误!')
return -1
if n==1 or n==2:
return 1
else:
return fab(n-1)+fab(n-2)
t0 = time.time()
print(fab(n))
t1 = time.time()
print(t1 - t0)
运行展示:
>>>n = 10
>>>
请输入一个整数10
55
0.000997781753540039
>>> n = 20
>>>
请输入一个整数20
6765
0.002010345458984375
>>>n = 30
>>>
请输入一个整数30
832040
0.2323622703552246
>>>n = 35
>>>
请输入一个整数35
9227465
2.5593106746673584
当n=40时,代码基本就卡住了,很久才能出结果:
优化递归方法
思路:利用,字典记录n-1项的值,方便后面计算时直接调用结果,实现运算的简便。
import time
n = int(input('请输入一个整数:'))
dic = {0: 0, 1: 1}
def fib(n):
if n in dic:
return dic[n]
else:
temp = fib(n-1)+fib(n-2)
dic[n] = temp
return temp
t0 = time.time()
print(fib(n))
t1 = time.time()
print(t1 - t0)
>>>n = 30
>>>
请输入一个整数:30
832040
0.0
>>> n = 50
>>>
请输入一个整数:50
12586269025
0.0
>>> n = 130
>>>
请输入一个整数:130
659034621587630041982498215
0.0009984970092773438
nice