Python 斐波那契数列优化

最简单版本

def fib(n):
    return 1 if n < 2 else fib(n - 1) + fib(n - 2)


print(fib(30))
1346269

195408_GWP2_2856757.png

 

使用装饰器缓存优化

使用缓存达到与循环数组相似的效果

def cache(fun):
    fibs = {}

    def wrapper(n):
        if n in fibs:
            return fibs[n]

        res = fun(n)
        fibs[n] = res
        return res

    return wrapper


@cache
def fib(n):
    return 1 if n < 2 else fib(n - 1) + fib(n - 2)


print(fib(30))
1346269

195738_083K_2856757.png

 

矩阵快速幂

201447_Lp8I_2856757.png

import numpy as np


def power(m, n):
    if n <= 1:
        return m

    t = power(m, n // 2)
    if n % 2 == 0:
        return np.dot(t, t)

    return np.dot(m, np.dot(t, t))


def fib(n):
    mat = np.array([[1, 1], [1, 0]])
    t = power(mat, n)[0][1]
    print(t)


for i in range(1, 40):
    fib(i)

1
1
2
3
5
8
13
21
34
55
89

201326_wLMK_2856757.png

 

 

转载于:https://my.oschina.net/ahaoboy/blog/1809139

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值