“21 天好习惯”第一期-17

Product of GCDs
思路:
在集合 S {S} S中任选 k {k} k个数组成一个新集合,求所有新集合 G C D {GCD} GCD的乘积,因为 x i {x_i} xi比较小,很容易想到(总数不容易求,常见的套路就是求每个数的贡献)枚举 G C D = p {GCD=p} GCD=p
假设 F [ x ] {F[x]} F[x]表示 G C D = = x {GCD==x} GCD==x的新集合的个数, f [ x ] {f[x]} f[x]表示 x ∣ G C D {x|GCD} xGCD( G C D {GCD} GCD x {x} x的倍数)的新集合的个数, a [ x ] {a[x]} a[x]表示因子包含 x {x} x的数的个数, G C D = p {GCD=p} GCD=p的贡献就是 p F [ x ] {p^{F[x]}} pF[x]
那么 f [ x ] = C a [ x ] k {f[x]=C_{a[x]}^{k}} f[x]=Ca[x]k,且 f [ x ] = ∑ x ∣ i F [ i ] {f[x]=\sum_{x|i}{F[i]}} f[x]=xiF[i]
如果要计算 6 F [ 6 ] 6^{F[6]} 6F[6],那么y由上面的定义可以确定的是 2 f [ 2 ] ∗ 3 f [ 3 ] 2^{f[2]}*3^{f[3]} 2f[2]3f[3]中已经计算过 6 F [ 6 ] 6^{F[6]} 6F[6]了,那么可以考虑变成枚举 G C D {GCD} GCD是质数。
但是对于质数 p {p} p G C D = p {GCD=p} GCD=p的贡献就是 p F [ x ] {p^{F[x]}} pF[x];对于质数 p 2 {p^2} p2 G C D = p 2 {GCD=p^2} GCD=p2的贡献就是 p 2 ∗ F [ x ] {p^{2*F[x]}} p2F[x]。而 p f [ x ] = p F [ x ] + f [ 2 x ] + . . . + f [ x 2 ] + . . . {p^{f[x]}}=p^{F[x]+f[2x]+...+f[x^2]+...} pf[x]=pF[x]+f[2x]+...+f[x2]+...,所以需要再加上 p f [ x 2 ] {p^{f[x^2]}} pf[x2]。同理对于质数 p 3 {p^3} p3,需要再加上 p f [ x 3 ] {p^{f[x^3]}} pf[x3]。其它同理。于是 p {p} p的贡献就是 p ∑ f [ p i ] {p^{\sum{f[p^i]}}} pf[pi]

因为 n = 4 e 4 {n=4e4} n=4e4,可想 f [ x ] {f[x]} f[x]会很大,所以需要用到欧拉降幂,可用公式法求出 φ ( P ) {φ(P)} φ(P),然后递推杨辉三角预处理组合数。
这题貌似会卡常,加法的时候用减法代替取余,反之取余我就T了。乘法的时候,因为模 P {P} P比较大,所以可以用 _ _ i n t 128 {\_\_int128} __int128或龟速乘。

code:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 8e4 + 7,maxm=1e7+30;
int n,k,m;
ll p,f[maxn/2][35],a[maxn];
vector<int>prime;
bool vis[maxm];
void initial() {
    for (int i = 2; i < maxm ; ++i) {
        if (!vis[i]) prime.emplace_back(i);
        for (int j = 0,size=prime.size(); j < size; ++j) {
            if (i * prime[j] >= maxm) break;
            vis[i * prime[j]] = true;
            if (i % prime[j] == 0) break;
        }
    }
}
inline ll Phi(ll p){
    ll x=p;
    for(int i:prime) {
    	if(i>x) break;
    	if(x%i==0){
            while(x%i==0)x/=i;
            p=p/i*(i-1);
        }
	}
    if(x>1)p=p/x*(x-1);
    return p;
}
ll qpow(ll a,ll b) {
	ll res=1;
	while(b) {
		if(b&1) res=(__int128)res*a%p;
		a=(__int128)a*a%p;
		b>>=1;
	}
	return res;
}
inline void solve() {
	cin>>n>>k>>p;
	ll phi=Phi(p); m=0;
	f[0][0]=1;
	for(int i=1;i<=n;++i) {
		f[i][0]=1;
		for(int j=min(i,k);j;--j) {
			f[i][j]=f[i-1][j]+f[i-1][j-1];
			if(f[i][j]>=phi) f[i][j]-=phi;
		}
	}
	for(int i=1,x;i<=n;++i) {
		cin>>x; a[x]+=1; if(x>m) m=x;
	}
	ll ans(1);
	for(auto &i:prime) {
		if(i>m) break;
		for(int k=i+i;k<=m;k+=i) a[i]+=a[k];
		ll tmp=f[a[i]][k];
		for(ll j=i*i;j<=m;j*=i) {
			for(int k=j+j;k<=m;k+=j) a[j]+=a[k];
			if(a[j]<k) break;
			tmp+=f[a[j]][k]; if(tmp>=phi) tmp-=phi;
		}
		if(tmp) ans=(__int128)ans*qpow(i,tmp)%p;
	}
	cout<<ans<<'\n'; 
 	memset(a,0,(m+1)<<3);
}
int main() {
    ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);
    initial();
    int T;
    cin>>T;
    while(T--) solve();
    return 0;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值