个人情况:
#BG
2014-2019:安徽双非-城乡规划-本科
2019-2022:南京985-城市规划-硕士
#工作经历
2022.07-2023.07:设计院做城市设计;
2023.08-至今:国内大模型公司prompter(提示词工程师)
01
2022年刚毕业,怀揣着理想,对城市设计行业还是有期许的,幻想着改变中国城市面貌。
当时领导跟我画的饼比我画的还要大。说好了第一年好好沉淀、认真画图,成为小组长;然后第二年,拓展技能点、学习汇报、项目管理、向上管理、甲方管理等综合技能,成为项目经理;再成长几年,成为项目负责人,拿着项目分成,去带项目,走向人生巅峰啦。
所以,领导说"小伙子啊,你要沉淀,要成长。"翻译一下就是:"你要加班,要熬夜。“毕竟刚毕业,热情腾腾的,我当时就信了,跟着领导披荆斩棘、加班加点。当时的字典里充满"节后第一天送审”、"下班前发给我"这种丧心病狂的词。
我当时还傻乎乎地在小红书上分享设计方案,幻想着有朝一日成为设计院的当红炸子鸡。结果呢?我成了设计院里的大炸鸡,每天被各种图纸的deadline炸得外焦里嫩。
02
然后,平地一声惊雷响,2023年3月chatgpt来了。
当时的我为一个城市设计方案绞尽脑汁,ppt里堆满了"营城九法"、“山水通廊”、"特色地段"这些听起来高大上实则毫无意义的词汇和设计说明;还有除了押韵,其他都不同的城市设计七言绝句。用完chatgpt后发现,这些都不是问题了。
这玩意儿简直就是摸鱼神器啊!不对,是生产力的革命。认真学习多年的"专业能力",居然不如一个AI。这感觉,像是大学辛辛苦苦学了三年仿宋体,最后不得不承认,你的努力没啥用。
于是,我白天依旧地画着永远不会实现的城市蓝图,晚上到点下班就偷偷跑,去自习室自学到深夜十一点多回家。当时学习资料还不像现在那么系统,资料很杂,只要和大模型沾边的资料自己都看,然后整理到自己的笔记里。
图 / 我的部分笔记
我还偷偷在公司最贵的电脑上部署了SD和本地大模型。领导有次问我干嘛,我拿出早就准备好的说辞,说:“大模型为了解放大家的生产力,可以带来更高的项目业绩。”
但事后我也反思SD文生图应用于建筑设计行业的局限性,主要卡点在于可控性,大多数图片第一眼看上去还可以,但仔细一推敲,还是很缺乏专业性。
6月份,我开始谋划跳槽。没有互联网经验?没关系,面试就是我的实习,把面试官当老师,把面试当免费课,靠着面试反馈来积累各类知识与经验。反正失败是常态,成功只是偶然,自己就是一个行走的"试错模型"。
7月份,攒够了经验,终于成功找到了一家大模型公司的工作。虽然当时的我对人工智能的理解可能还停留在"人工"这个层面,但是没关系,先上车再买票。
03
回顾一下自己当初的决策心路:选完赛道,便思考现阶段该选择什么职业,去参与这场革命呢?
目标是大模型赛道嘛,那时候想得比较直接,直接从招聘软件上过滤大模型初创公司和互联网公司的HC,看看目标赛道的岗位有什么要求?
大体上分为3类:
一种算法类,偏向于研究大模型,提升大模型的性能;
一种开发类,偏向于应用大模型,封装大模型的能力至软件某项功能中;
一种产品类,偏向于应用大模型,把软件设计得更加满足用户需求。
先把不能选的排除吧,算法、开发、运维、数分等职位直接略过。别人的履历都是竞赛金牌、大厂实习、手撕代码;只学过概率论、高等数学都没学过的我瑟瑟发抖(还是很想吐槽这点,大学数学不学,真的非常限制就业方向),实在是打不过,我直接略过了算法类和开发类岗位。
那接下来,只能从产品类挑选。传统的产品岗位也有很多细分,有不同功能模块的产品经理(计算机视觉、语音识别、平台、对话系统、数据分析等等)、交互设计产品经理(UI)、用户体验产品经理(UX)、解决方案产品经理(SA)等等。随着chatgpt等大模型爆火,还有一类产品经理,即prompter,提示词工程师的岗位也越来越多。
图 / 产品岗位与薪资
当时我的策略是,所有产品类岗位都投简历,哪家简历通过了,就面哪家。面试失败了,就复盘一下潜在的失败原因,补充相关知识后,继续面下一家。
其次,面试顺序还是有讲究的,先面小厂和一些创业公司,一半通过一半挂,有了一定的基本盘后;再面大厂,百度挂在二面、字节挂在三面,还有一些研究院也通过了,最后也很幸运地面上了一家清华系的大模型公司,担任prompt。
再说说精彩吧,我竟然发现:
原来,这个世界上真的存在周末!周末加班,竟然是可以调休的;
原来,开会是可以1个小时内结束,不需要每个会议都3个小时起步;
原来,放假前一天可以早点下班,不用每次放假前领导都喊一句我们来开个会,直到晚上10点;
原来,每年的年假是可以使用的,不用再担心同事带头内卷,5年都不休年假;
刚来的时候,晚上九点了,有的同事抱怨怎么还不下班;我就在想,怎么九点了,就可以下班了呢?;
虽说晚上偶尔也会加班到九十点,但经过设计院的毒打之后,觉得科技公司的剥削还算稍微轻点。
……
呆了一年之后,见了很多人,才更加感叹,人生真tm是旷野呀,原来有好多人都过得如此丰富。
有同事从大厂来,顶尖学府毕业,出过国,国内大厂,创过业,buffer叠满了;为了跟进大模型,卖了公司,沉淀学习。
也有不少同事工作一年后,去了大厂,薪资立涨50%,升职加薪,迎娶白富美。
还有一个还在读大学的实习生,在过年期间推出了一款大模型游戏,抓住了一大波流量,把自己的创业团队卖了几百万,直接财富小自由。
当然,也不是所有人都那么幸运,有老师做了法律大模型,至今每月活跃用户不超过30位。这让我想起了以前画的图纸,估计看过的人差不多这个数字。
跌跌撞撞地摸爬滚打了一年多的时间,有时候会回想:一年后、十年后、三十年后的我会不会后悔这次选择?
我想答案是走一步看一步,毕竟是自己选择的路,最终解释权在自己手里。 在一开始使用中,自己真实地感受到大模型可以帮我写代码、改稿子、出主意、闲聊等等,真正地感受到自己的生产力提升。原本要写三天的设计说明,半天就能写完,半天再改改就可以交差。
正是因为这点,我相信大模型是第四次科技革命的星星之火,智能会如同煤炭、石油、电力一样,终将会带来持续的社会演化,大模型的未来还会很久。这是我选择这条赛道的初心。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓