有了前一篇博文的基础,这里写系统 T 比较简单。
系统 T 的公理是在系统 K 的公理基础上新加了一条公理:T :
L
p
⊃
p
\quad Lp\supset p
Lp⊃p。系统 K 的定理都是系统 T 的定理。下图是一个推导系统 T 中定理的过程:
系统 T 要求模态逻辑的模型
M
=
<
W
,
R
,
V
>
M=<W,R,V>
M=<W,R,V> 中的
R
R
R 满足反身性 (reflexive),即
w
R
w
,
∀
w
∈
R
wRw, \forall w\in R
wRw,∀w∈R,每个可能世界能够到达自身。由下图可以推导一下公理 T:假如公理 T 不成立,则在可能世界
w
w
w 中要满足
p
=
0
p=0
p=0 且
L
p
=
1
Lp=1
Lp=1,但是
w
w
w 能到达的所有世界(只有它自己)中
p
=
1
p=1
p=1,所以
L
p
Lp
Lp 必须是 1,故公理 T 必须成立,即
L
p
⊃
p
\quad Lp\supset p
Lp⊃p在系统 T 中是正确的。
