有关模态逻辑的知识请看模态逻辑入门笔记,有关证据理论的知识请看证据理论入门笔记。本文主要记录我对文献[1]的理解,文献[2]介绍了一种基于多值映射 (Multivalued mapping) 解释证据理论的方法,多值映射类似模态理论中的关系 R R R。
符号定义
- M = < W , R , V > M=<W,R,V> M=<W,R,V>,模态逻辑的模型 M M M,模态逻辑采用系统 T 或更强的模态逻辑系统,即 R R R 满足反身性 (reflexive),每个可能世界能够到达自身。
- ∣ ∣ p ∣ ∣ M ||p||^M ∣∣p∣∣M,命题 p p p 的真集 (Truth set),即 ∣ ∣ p ∣ ∣ M = { w ∣ w ∈ W ∧ V ( p , w ) = T } ||p||^M=\{w|w\in W\wedge V(p,w)=T\} ∣∣p∣∣M={w∣w∈W∧V(p,w)=T}。
- ∣ A ∣ |A| ∣A∣,集合 A A A 的基数,即集合 A A A 中元素的个数。例如, A = { 1 , 2 , 3 } , ∣ A ∣ = 3 A=\{1,2,3\},|A|=3 A={1,2,3},∣A∣=3。
- X X X,证据理论的辨识架构。
-
e
A
e_A
eA,一个命题,表示一个给定的研究元素被分类到集合
A
A
A 中。
e A = ⋁ x ∈ A e { x } , ∀ A ≠ ∅ ; e ∅ = ⋀ x ∈ X ¬ e { x } e_A=\bigvee_{x\in A}e_{\{x\}},\forall A \neq \emptyset;\qquad e_\emptyset=\bigwedge_{x\in X}\neg e_{\{x\}} eA=x∈A⋁e{x},∀A=∅;e∅=x∈X⋀¬e{x}
证据理论的模态逻辑解释
- 信任函数: B e l ( A ) = ∑ B ⊆ A m ( B ) = ∣ ∣ ∣ □ e A ∣ ∣ M ∣ ∣ W ∣ Bel(A)=\sum_{B\subseteq A}m(B)=\frac{\big\lvert||\square e_A||^M\big\rvert}{|W|} Bel(A)=B⊆A∑m(B)=∣W∣∣∣∣∣□eA∣∣M∣∣
- 似然函数: P l ( A ) = ∑ B ∩ A ≠ ∅ m ( B ) = ∣ ∣ ∣ ◊ e A ∣ ∣ M ∣ ∣ W ∣ Pl(A)=\sum_{B\cap A\neq\emptyset}m(B)=\frac{\big\lvert||\Diamond e_A||^M\big\rvert}{|W|} Pl(A)=B∩A=∅∑m(B)=∣W∣∣∣∣∣◊eA∣∣M∣∣
- 基本概率分配函数: m ( A ) = ∣ ∣ ∣ E A ∣ ∣ M ∣ ∣ W ∣ m(A)=\frac{\big\lvert||E_A||^M\big\rvert}{|W|} m(A)=∣W∣∣∣∣∣EA∣∣M∣∣ E A = □ e A ∧ ( ⋀ B ⊂ A ( ¬ ( □ e B ) ) ) E_A=\square e_A \wedge \Big(\bigwedge_{B\subset A}(\neg(\square e_B))\Big) EA=□eA∧(B⊂A⋀(¬(□eB)))
下面解释上面几个公式(可以参考下图)。首先,假设在每一个可能世界
w
w
w 中,有且仅有一个
x
∈
W
x\in W
x∈W 使命题
e
{
x
}
e_{\{x\}}
e{x} 为真 (Singleton Valuation Assumption),我称之为可能世界
w
w
w 对应的
x
x
x。
w
′
w'
w′ 是从一个
w
w
w 能够到达的可能世界(可能有好几个
w
′
w'
w′),
w
′
w'
w′ 对应的
x
x
x 构成集合
B
B
B,我称之为
w
w
w 对应的集合
B
B
B。
接下来,有一类
w
w
w 的集合,其中
w
w
w 对应的集合
B
B
B 是集合
A
A
A 的子集,即有
(
∀
w
′
)
(
w
R
w
′
⊃
V
(
e
A
,
w
′
)
=
T
)
(\forall w') (wRw'\supset V(e_A,w')=T)
(∀w′)(wRw′⊃V(eA,w′)=T),则
V
(
□
e
A
,
w
)
=
T
V(\square e_A,w)=T
V(□eA,w)=T,这类
w
w
w 的集合即为
∣
∣
□
e
A
∣
∣
M
||\square e_A||^M
∣∣□eA∣∣M。
还有一类
w
w
w 的集合,其中的任意一个
w
w
w 能到达的可能世界
w
′
w'
w′,
w
′
w'
w′ 对应的
x
x
x 构成的集合
B
B
B 包含集合
A
A
A,这类
w
w
w 的集合为
∣
∣
⋀
x
∈
A
◊
e
{
x
}
∣
∣
M
||\bigwedge_{x\in A}\Diamond e_{\{x\}}||^M
∣∣⋀x∈A◊e{x}∣∣M。
另一类
w
w
w 的集合,其中
w
w
w 对应的集合
B
B
B 与集合
A
A
A相交不为空集,即
B
∩
A
≠
∅
B\cap A \neq \emptyset
B∩A=∅,则有
(
∃
w
′
)
(
w
R
w
′
∧
V
(
e
A
,
w
′
)
=
T
)
(\exist w') (wRw'\wedge V(e_A,w')=T)
(∃w′)(wRw′∧V(eA,w′)=T),这类
w
w
w 的集合即为
∣
∣
◊
e
A
∣
∣
M
||\Diamond e_A||^M
∣∣◊eA∣∣M。
定义一个集合
B
w
=
{
x
∈
X
∣
(
∃
w
′
)
(
w
R
w
′
∧
V
(
e
{
x
}
,
w
′
)
=
T
)
}
B_w=\{x\in X\big|(\exist w')(wRw'\wedge V(e_{\{x\}},w')=T)\}
Bw={x∈X∣∣(∃w′)(wRw′∧V(e{x},w′)=T)},其实就是上述 3 中的集合
A
A
A,对于每一个可能世界
w
w
w,这样的集合有且只有一个,不同的
w
w
w 可以有相同的
B
w
B_w
Bw,
B
w
B_w
Bw 由所有
w
w
w 可以到达的
w
′
w'
w′ 对应的
x
x
x 构成。
由上述分析可以看出,可能世界
w
w
w 对应的集合
B
B
B 和集合
A
A
A 之间的关系是符合经典 DS 证据理论的,这样也就能更好的理解上述公式。
Example
证据理论的模态逻辑解释的完整性 (Completeness)
对于每一个由理数构成的基本概率分配函数,都存在一个系统 T 的模态逻辑模型 M M M 能推导出该基本概率分配函数。看例子怎么找这个模型 M M M 。
Example