证据理论的模态逻辑解释

  有关模态逻辑的知识请看模态逻辑入门笔记,有关证据理论的知识请看证据理论入门笔记。本文主要记录我对文献[1]的理解,文献[2]介绍了一种基于多值映射 (Multivalued mapping) 解释证据理论的方法,多值映射类似模态理论中的关系 R R R

符号定义

  1. M = < W , R , V > M=<W,R,V> M=<W,R,V>,模态逻辑的模型 M M M,模态逻辑采用系统 T 或更强的模态逻辑系统,即 R R R 满足反身性 (reflexive),每个可能世界能够到达自身。
  2. ∣ ∣ p ∣ ∣ M ||p||^M pM,命题 p p p 的真集 (Truth set),即 ∣ ∣ p ∣ ∣ M = { w ∣ w ∈ W ∧ V ( p , w ) = T } ||p||^M=\{w|w\in W\wedge V(p,w)=T\} pM={wwWV(p,w)=T}
  3. ∣ A ∣ |A| A,集合 A A A 的基数,即集合 A A A 中元素的个数。例如, A = { 1 , 2 , 3 } , ∣ A ∣ = 3 A=\{1,2,3\},|A|=3 A={1,2,3},A=3
  4. X X X,证据理论的辨识架构。
  5. e A e_A eA,一个命题,表示一个给定的研究元素被分类到集合 A A A 中。ea的解释
    e A = ⋁ x ∈ A e { x } , ∀ A ≠ ∅ ; e ∅ = ⋀ x ∈ X ¬ e { x } e_A=\bigvee_{x\in A}e_{\{x\}},\forall A \neq \emptyset;\qquad e_\emptyset=\bigwedge_{x\in X}\neg e_{\{x\}} eA=xAe{x},A=;e=xX¬e{x}

证据理论的模态逻辑解释

  1. 信任函数: B e l ( A ) = ∑ B ⊆ A m ( B ) = ∣ ∣ ∣ □ e A ∣ ∣ M ∣ ∣ W ∣ Bel(A)=\sum_{B\subseteq A}m(B)=\frac{\big\lvert||\square e_A||^M\big\rvert}{|W|} Bel(A)=BAm(B)=WeAM
  2. 似然函数: P l ( A ) = ∑ B ∩ A ≠ ∅ m ( B ) = ∣ ∣ ∣ ◊ e A ∣ ∣ M ∣ ∣ W ∣ Pl(A)=\sum_{B\cap A\neq\emptyset}m(B)=\frac{\big\lvert||\Diamond e_A||^M\big\rvert}{|W|} Pl(A)=BA=m(B)=WeAM
  3. 基本概率分配函数: m ( A ) = ∣ ∣ ∣ E A ∣ ∣ M ∣ ∣ W ∣ m(A)=\frac{\big\lvert||E_A||^M\big\rvert}{|W|} m(A)=WEAM E A = □ e A ∧ ( ⋀ B ⊂ A ( ¬ ( □ e B ) ) ) E_A=\square e_A \wedge \Big(\bigwedge_{B\subset A}(\neg(\square e_B))\Big) EA=eA(BA(¬(eB)))

  下面解释上面几个公式(可以参考下图)。首先,假设在每一个可能世界 w w w 中,有且仅有一个 x ∈ W x\in W xW 使命题 e { x } e_{\{x\}} e{x} 为真 (Singleton Valuation Assumption),我称之为可能世界 w w w 对应的 x x x w ′ w' w 是从一个 w w w 能够到达的可能世界(可能有好几个 w ′ w' w), w ′ w' w 对应的 x x x 构成集合 B B B,我称之为 w w w 对应的集合 B B B
  接下来,有一类 w w w 的集合,其中 w w w 对应的集合 B B B 是集合 A A A 的子集,即有 ( ∀ w ′ ) ( w R w ′ ⊃ V ( e A , w ′ ) = T ) (\forall w') (wRw'\supset V(e_A,w')=T) (w)(wRwV(eA,w)=T),则 V ( □ e A , w ) = T V(\square e_A,w)=T V(eA,w)=T,这类 w w w 的集合即为 ∣ ∣ □ e A ∣ ∣ M ||\square e_A||^M eAM
  还有一类 w w w 的集合,其中的任意一个 w w w 能到达的可能世界 w ′ w' w w ′ w' w 对应的 x x x 构成的集合 B B B 包含集合 A A A,这类 w w w 的集合为 ∣ ∣ ⋀ x ∈ A ◊ e { x } ∣ ∣ M ||\bigwedge_{x\in A}\Diamond e_{\{x\}}||^M xAe{x}M
  另一类 w w w 的集合,其中 w w w 对应的集合 B B B 与集合 A A A相交不为空集,即 B ∩ A ≠ ∅ B\cap A \neq \emptyset BA=,则有 ( ∃ w ′ ) ( w R w ′ ∧ V ( e A , w ′ ) = T ) (\exist w') (wRw'\wedge V(e_A,w')=T) (w)(wRwV(eA,w)=T),这类 w w w 的集合即为 ∣ ∣ ◊ e A ∣ ∣ M ||\Diamond e_A||^M eAM
  定义一个集合 B w = { x ∈ X ∣ ( ∃ w ′ ) ( w R w ′ ∧ V ( e { x } , w ′ ) = T ) } B_w=\{x\in X\big|(\exist w')(wRw'\wedge V(e_{\{x\}},w')=T)\} Bw={xX(w)(wRwV(e{x},w)=T)},其实就是上述 3 中的集合 A A A,对于每一个可能世界 w w w,这样的集合有且只有一个,不同的 w w w 可以有相同的 B w B_w Bw B w B_w Bw 由所有 w w w 可以到达的 w ′ w' w 对应的 x x x 构成。
  由上述分析可以看出,可能世界 w w w 对应的集合 B B B 和集合 A A A 之间的关系是符合经典 DS 证据理论的,这样也就能更好的理解上述公式。

在这里插入图片描述

Example


在这里插入图片描述

证据理论的模态逻辑解释的完整性 (Completeness)

  对于每一个由理数构成的基本概率分配函数,都存在一个系统 T 的模态逻辑模型 M M M 能推导出该基本概率分配函数。看例子怎么找这个模型 M M M

Example


在这里插入图片描述

参考文献

[1] Harmanec D , Klir G J , Resconi G . On modal logic interpretation of Dempster–Shafer theory of evidence[J]. International Journal of Intelligent Systems, 2010, 9(10):941-951.
[2] Tsiporkova E , Boeva V , Baets B D . Dempster–Shafer theory framed in modal logic[J]. International Journal of Approximate Reasoning, 1999, 21(2):157-175.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值