前言
声明:这个系列的博文都是我自己学习所得的东西,秉承着每天进步一点点的理念进行学习,我参考的课程是《菊安酱与菜菜的Python机器学习可视化50图》,使用的Python版本为3.6.4。
SCI论文的发表对于像我这样的一般人而言总是有难度的,而对于SCI文章中比较重要的东西用图表示更能让人理解,所以我决定开始学习用Python制作一些比较高大上的统计图,以提高论文的质量。每天学习一点就会更新在博文里面,我按照自己的学习安排,慢慢构建自己的脑图,今天是散点图中的第一个内容——简单的散点图。
散点图
散点图是指在回归分析中,数据点在直角坐标系平面上的分布图,散点图表示因变量随自变量而变化的大致趋势,据此可以选择合适的函数对数据点进行拟合。
用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。散点图将序列显示为一组点。值由点在图表中的位置表示。类别由图表中的不同标记表示。散点图通常用于比较跨类别的聚合数据。
简单的散点图绘制方法
1.首先,需要导入使用的python库,如果没有这些库需要先进行安装,在cmd下,利用pip命令进行安装即可。需要的库包括 numpy、pandas、matplotlib、seaborn。
import numpy as np #数学处理库
import pandas as pd #用于处理.csv excel html 文本等文件
import matplotlib as mpl #画图像的库
import matplotlib.pyplot as plt #画二维图像的库
import seaborn as sns #颜色库
#画散点图的函数plt.scatter()
#1.绘制一个简单的散点图:X1和X2之间的关系图
#定义数据
x1 = np.random.randn(10)#取10个随机数,其中random为随机数函数,randn为取的数是正态分布的数
x2 = x1+x1**2-10
#确定一个画布,当只有一个图可以不确定
plt.figure(figsize=(8,4))#第一条线是横的,第二条是竖的
#绘图
plt.scatter(x1,x2,s=20,c="blue",label="Positive")#(横纵坐标,点的尺寸大小,颜色,图例的名称可以不写)
#装饰图形
plt.legend()#显示图例
plt.show()#显示图形
2.进行绘制图像,代码如下,这一个主要是为了看效果使用了随机数,x2也是关于随机数x1的函数,我已经附上了注释:
#1.绘制一个简单的散点图:X1和X2之间的关系图
#定义数据
x1 = np.random.randn(10)#取10个随机数,其中random为随机数函数,randn为取的数是正态分布的数
x2 = x1+x1**2-10
#确定一个画布大小,当只有一个图可以不确定
plt.figure(figsize=(8,4))#第一条线是横的,第二条是竖的
#绘图
plt.scatter(x1,x2,s=20,c="blue",label="Positive")#(x1,x2为横纵坐标,点的尺寸大小,颜色,图例不需要图例的话可以省略)
#装饰图形
plt.legend()#显示图例
plt.show()#显示图形
完整版代码
#Author:Albert
#Time:2020/03/22
#usage:散点图
import numpy as np #数学处理库
import pandas as pd #
import matplotlib as mpl #画图像的库
import matplotlib.pyplot as plt #画二维图像的库
import seaborn as sns #颜色库
#画散点图的函数plt.scatter()
#1.绘制一个简单的散点图:X1和X2之间的关系图
#定义数据
x1 = np.random.randn(10)#取10个随机数,其中random为随机数函数,randn为取的数是正态分布的数
x2 = x1+x1**2-10
#确定一个画布,当只有一个图可以不确定
plt.figure(figsize=(8,4))#第一条线是横的,第二条是竖的
#绘图
plt.scatter(x1,x2,s=20,c="blue",label="Positive")#(横纵坐标,点的尺寸大小,颜色,图例的名称可以不写)
#装饰图形
plt.legend()#显示图例
plt.show()#显示图形
实现效果
思考与练习
大家今天可以试着改变绘制出点的样式,并思考如何绘制多类别变量的散点图。