刷题 2020/08/24

  1. 二叉树:

    二叉树最大深度 / 最小深度 :BFS (用栈)

  2. 旋转数组:
    面试题 10.03. 搜索旋转数组

  3. 旋转矩阵打印

    从左往右,从上往下,从右往左,从下往上 (加判断条件判断是否结束)

  4. 笔试记录:

腾讯:
第一题:添加最少的括号使其有效(有 ‘(’, ‘)’, ‘[’, ‘]’ 等)

第二题:一个积分,很好搞定。

第三题:现有n个人,要从这n个人中选任意数量的人组成一只队伍,再在这些人中选出一名队长,求不同的方案对10^9+7取模的结果。如果两个方案选取的人的集合不同或选出的队长不同,则认为这两个方案是不同。

f ( n ) = 1 ∗ C n 1 + 2 ∗ C n 2 + 3 ∗ C n 3 + ⋯ + n ∗ C n n f(n) = 1 * C_n^1 + 2 * C_n^2 + 3 * C_n^3 + \cdots + n * C_n^n f(n)=1Cn1+2Cn2+3Cn3++nCnn
f ( n ) = ∑ i = 1 n i ∗ C n i f(n) = \sum^n_{i=1} {i * C_n^i} f(n)=i=1niCni
f ( n ) = ∑ i = 1 n ( n − i ) ∗ C n ( n − i ) = ∑ i = 1 n ( n − i ) ∗ C n i f(n) = \sum^n_{i=1} {(n-i) * C_n^{(n-i)}} = \sum^n_{i=1} {(n-i) * C_n^{i}} f(n)=i=1n(ni)Cn(ni)=i=1n(ni)Cni
2 f ( n ) = ∑ i = 1 n i ∗ C n i + ∑ i = 1 n ( n − i ) ∗ C n i = ∑ i = 1 n n ∗ C n i = n ∗ 2 n 2 f(n) = \sum^n_{i=1} {i * C_n^i} + \sum^n_{i=1} {(n-i) * C_n^{i}} = \sum^n_{i=1} {n * C_n^{i}}=n * 2^n 2f(n)=i=1niCni+i=1n(ni)Cni=i=1nnCni=n2n
f ( n ) = n ∗ 2 n − 1 f(n) = n * 2 ^ {n-1} f(n)=n2n1

第四题:n 个点,有些点之间有路径,有些点之间有传送门,路径双向消耗1精力,传送门单向不消耗精力,从第1个点到第n点,返回最小路径,没有返回-1.

第五题:g(x)表示x附近的点,g(x)=g(y)创造一个价值,求图的总价值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值