2000—2018年中国植被光学厚度时空动态特征及驱动因素
摘要
本文基于不同频率的VOD数据集(VODCA C-VOD、X-VOD、Ku-VOD和AMSRU X-VOD),利用趋势分析和残差分析等方法研究了2000—2018年中国不同地区以及不同植被类型VOD的时空动态变化,并在全国及区域尺度上定量评估了气候变化和人类活动的相对贡献。
结果表明:
①中国植被VOD呈极显著增加趋势,AMSRU X-VOD增加速率最快(0.062/10a),尤其是华东地区,而VODCA C-VOD增加速率最低(0.013/10a),其中西南地区增速最高;不同植被类型中,草丛的增速最快,其次为针叶林和灌丛。
②降水和辐射的增加促进了华北和西北地区VOD的增加,气温的贡献主要分布在华南和沿海地区,辐射对表征植被冠层的Ku-VOD和X-VOD的贡献较高。
③不同数据集均表明人类活动是植被VOD增加的主要因素,VODCA C-VOD、Ku-VOD、X-VOD和AMSRU X-VOD的人类活动贡献率分别为171%、48%、43%和30%,在黄土高原、西南地区和东北平原尤为突出。
本文研究结果为生态工程成效评价提供新的数据支持,并为未来生态系统管理和碳增汇提供科学依据。
关键词
植被光学厚度(VOD);时空动态;气候变化;人类活动
DOI: 10.11821/dlxb202303014
2 数据与方法
2.1 数据来源
2.1.1 植被类型数据
来源于国家青藏高原科学数据中心(http://data.tpdc.ac.cn)。
2.1.2 气象数据
本文使用了2000—2018年期间的气象数据,包括月平均温度、月降水量。这些数据来源于国家科技基础条件平台—国家地球系统科学数据中心黄土高原分中心(http://loess.geodata.cn)。
2.1.3 VOD数据
VODCA 数据由维也纳工业大学提供(https://doi.org/10.5281/zenodo.2575599)。
AMSRU X-VOD由蒙大拿大学根据LPDR(Land parameter data record)算法设计,在美国国家冰雪数据中心(NSIDC)网站获取(https://nsidc.org/data/)。
2.2 研究方法
1、Theil-Sen Median法 又称Sen斜率估计。
2、Mann-Kendall(MK)法
3、偏相关分析
3 结果与分析
3.1 中国植被VOD的时空动态特征
2000—2018年不同数据集均表明中国植被VOD呈极显著增加趋势(p < 0.01)(图2),其中AMSRU X-VOD上升速率最快,速率为0.062/10a,其次为VODCA X-VOD、Ku-VOD和C-VOD,增加速率分别为 0.022/10a,0.014/10a 和 0.013/10a。
华东地区VOD上升趋势最为显著(p < 0.01),其次为华南、华中、华北、西南、西北和东北地区(图3)。
不同自然植被类型VOD的趋势分析发现,草丛的增速最快,其次为针叶林、灌丛、阔叶林、草原、高山植被、草甸和针阔混合林 (图4)。
VOD的变化趋势均呈现一定的空间异质性,总体呈逐渐增加趋势 (图5)。
3.2 VOD与气候变化的偏相关分析
偏相关分析结果表明
VODCA C-VOD 与降水的相关性最高,辐射次之,温度最低(图 6a、6e、6i)。
VODCA Ku-VOD、X-VOD 和 AMSRU X-VOD 与辐射的相关性最高(图6j-6l),降水次之(图6b-6d),温度最低(图6f-6h)。
3.3 人类活动和气候变化对植被活动的贡献
利用残差分析方法量化了气候因素(降水、温度和辐射)和人类活动对植被VOD变化的相对贡献(图7)。
降水对全国大部分区域VOD的变化为正贡献,即降水的增加促进了VOD的增加(图7a-7d)。
气温对中国 VOD 的变化贡献率相对较低(图 7e~7h)。
辐射的增强对 VOD的增加起促进作用的区域主要集中在黄土高原和华东地区 (图7i~7l)。辐射还对华南和华北地区AMSRU X-VOD呈显著正贡献,同时辐射的减弱抑制了青藏高原东部AMSRU X-VOD的增加。
人类活动促进全国尺度VOD增加的区域主要分布在黄土高原、东北平原、四川盆地以东的中国东部和华南地区(图7m~7p)。
根据中国 VOD 实际变化趋势以及分别受气候变化和人类活动影响的 VOD 变化趋势,计算得到降水、气温、辐射和人类活动对全国VOD的贡献率,人类活动对VOD的变化贡献率相对较大(图8)。
在区域尺度上,VODCA C-VOD的结果表明人类活动是所有区域VOD增加的主导因素(图9);VODCA Ku-VOD和X-VOD的结果发现人类活动主导了中国东北、华南和华中地区VOD的增加。相比之下,AMSRU X-VOD的结果表明,人类活动仅主导了华中地区VOD的增加,而对东北
和西北地区的VOD为负向贡献。
总体上,在西南地区降水相比于其他气候因子相对贡献最高,而辐射对其他区域的相对贡献最高。具体而言,辐射对东北、华中、华东和西南地区VODCA C-VOD为负贡献,降水对东北、华南地区的VODCA Ku- VOD 以及华东地区 的VODCA C- VOD、 Ku- VOD为负贡献,气温相对贡献最低,仅对华南地区的 VODCA Ku-VOD 以及东北、华北、西北 VODCA C-VOD、Ku-VOD为负向贡献。
4 讨论
4.1 气候因子对VOD变化的影响
2000—2018年间,华北和西北地区辐射和降水的持续增加有效地促进了植被VOD的增加 (图7、图10)。
4.2 人类活动对VOD变化的影响
4.3 不同频率VOD结果之间的差异
5 结论
本文基于不同频率的VOD数据分析了2000—2018年中国不同区域及不同植被类型VOD的时空动态,并定量区分了气候变化和人类活动对植被VOD变化的相对贡献。主要结论如下:
(1)2000—2018年间中国植被VOD显著增加,尤其是在黄土高原、东北平原、四川盆地和华南地区。不同自然植被类型中草丛的增速最快,其次为针叶林、灌丛。不同频率VOD的结果表明植被冠层的增长速度高于植被整体生物量。
(2) VODCA C-VOD与降水的相关性最高,而VODCA Ku-VOD和X-VOD及AMSRU X-VOD与辐射的相关性最高。
(3)降水和辐射的增加促进了中国华北和西北地区VOD的增加,气温的贡献主要分布在华南和沿海地区,辐射对表征植被冠层的Ku-VOD和X-VOD的贡献较高,而对C-VOD负向贡献较高。
(4)人类活动对全国Ku-VOD和X-VOD增加的贡献率在30%~48%之间,对C-VOD变化贡献最大,尤其是黄土高原、西南地区和东北平原。由于其自身优势,VOD在植被覆盖度较高的区域更能反映植被的时空动态变化,因此,未来植被动态监测中,综合使用传统光学遥感和被动微波遥感植被指标可以有效提高评估的准确性。