数据清洗:异常值检测方法

本文介绍了数据清洗中异常值检测的三种方法:3σ原则适用于正态分布数据,Z_score利用标准差衡量数据点偏离程度,Boxplot则通过四分位数和四分位数间距识别异常值。这些方法在数据预处理中至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

一、基于分布

1、3σ原则

3σ原则又称为拉依达法则。该法则就是先假设一组检测数据只含有随机误差,对原始数据进行计算处理得到标准差,然后按一定的概率确定一个区间,认为误差超过这个区间的就属于异常值。
  这种判别处理方法仅适用于对正态或近似正态分布的样本数据进行处理,如下表所示,其中σ代表标准差,μ代表均值,x=μ为图形的对称轴。
  数据的数值分布几乎全部集中在区间(μ-3σ,μ+3σ)内,超出这个范围的数据仅占不到0.3%。故根据小概率原理,可以认为超出3σ的部分数据为异常数据。
在这里插入图片描述在这里插入图片描述
代码:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清木!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值