炸鸡块君与FIFA22(倍增 + ST表)

2022牛客寒假算法基础集训营1
在这里插入图片描述

ST表

倍增二进制划分相结合可以降低很多题目的算法复杂度。主要常见的应用为求区间最值问题(RMQ)的ST表,以及求解最近公共祖先(LCA)的树上倍增思想。
以下总结的关于RMQ问题的思想。

功能

O(1)时间复杂度内在线回答数组中在下标 [ l , r ] [l, r] [l,r]之间的数最大值为多少。但是需要NlogN的时间预处理。

定义

f [ i , j ] : 表示数列 A 中下标在区间 [ i , i + 2 j − 1 ] 里的数的最大值,也就是从 i 开始的 2 j 个数的最大值。 f[i, j] : 表示数列A中下标在区间[i, i + 2^j - 1]里的数的最大值,也就是从i开始的2^j个数的最大值。 f[i,j]:表示数列A中下标在区间[i,i+2j1]里的数的最大值,也就是从i开始的2j个数的最大值。
递推边界: f [ i , 0 ] = A [ i ] f[i, 0] = A[i] f[i,0]=A[i]

状态转移方程

f [ i , j ] = m a x ( f [ i , j − 1 ] , f [ i + 2 j − 1 , j − 1 ] ) f[i, j] = max(f[i, j - 1], f[i + 2^{j - 1}, j - 1]) f[i,j]=max(f[i,j1],f[i+2j1,j1])
f [ i ] [ j ] = m a x ( f [ i ] [ j − 1 ] , f [ i + ( 1 < < ( j − 1 ) ) ] [ j − 1 ] ) ; f[i][j] = max(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]); f[i][j]=max(f[i][j1],f[i+(1<<(j1))][j1]);
即长度为 2 j 2^j 2j 的的区间的最大值等于左右两个长度为 2 j − 1 2^{j - 1} 2j1的区间的最大值中较大的一个。

查询

当查询任意区间的最值时,我们需要先计算出一个满足以下条件的k值, 2 k ≤ r − l + 1 < 2 k + 1 2^k \leq r- l + 1 < 2^{k + 1} 2krl+1<2k+1,也即使2的次幂小于区间长度的同时尽量大的一个k值。

代码

	int n; cin >> n;
	for (int i = 1; i <= n; i++)
		cin >> a[i];

	for (int i = 1; i <= n; i++) f[i][0] = a[i];
	int t = log(n) / log(2) + 1;

	//mp数组记录长度为j的区间对应的k值
	for (int i = 0; i <= t; i++)
		for (int j = 1 << i; j < min(n + 1, 1 << (i + 1)); j++)
			mp[j] = i;

	for (int j = 1; j < t; j++)
		for (int i = 1; i <= n - (1 << j) + 1; i++)
			f[i][j] = max(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);

	int q; cin >> q;
	while (q--)
	{
		int l, r; cin >> l >> r;
		int k = mp[r - l + 1];
		cout << max(f[l][k], f[r - (1 << k) + 1][k]) << endl;
	}

拓展(二维RMQ问题)

有两种方法

  1. f [ i ] [ j ] [ k ] : 以点 ( i , j ) 为左上角坐标,边长为 2 k 的矩阵中的最值 f[i][j][k]: 以点(i, j)为左上角坐标,边长为 2^k 的矩阵中的最值 f[i][j][k]:以点(i,j)为左上角坐标,边长为2k的矩阵中的最值
    f [ i ] [ j ] [ k ] = f [ i ] [ j ] [ k − 1 ] + f [ i + ( 1 < < ( k − 1 ) ) ] [ j ] [ k − 1 ] + f [ i ] [ j + ( 1 < < ( k − 1 ) ) ] [ k − 1 ] + f [ i + ( 1 < < ( k − 1 ) ) ] [ j + ( 1 < < ( k − 1 ) ) ] [ k − 1 ] f[i][j][k] = f[i][j][k - 1] +\\ f[i + (1 << (k - 1))][j][k - 1] + \\ f[i][j + (1 << (k - 1))][k - 1] +\\ f[i + (1 << (k - 1))][j + (1 << (k - 1))][k - 1] f[i][j][k]=f[i][j][k1]+f[i+(1<<(k1))][j][k1]+f[i][j+(1<<(k1))][k1]+f[i+(1<<(k1))][j+(1<<(k1))][k1]类似于二维区间前缀和, 其实就是一个 “田”字, 一次查询即为答案,时间复杂度 O ( 1 ) O(1) O(1)

  2. f [ i ] [ j ] [ k ] : 第 i 行,区间 [ j , j + 2 k − 1 ] 中的最值 f[i][j][k]:第i行,区间[j, j + 2^k - 1]中的最值 f[i][j][k]:i行,区间[j,j+2k1]中的最值
    转移方程与一般的ST表一样,只是多了一维。一次查询需要循环k次, 时间复杂度 O ( k ) O(k) O(k)


Solution

很明显,对于模3相等的初始值,其相同区间的分数变化量相同。所以我们只需要分别求出初始值为0, 1, 2时所有子区间各自对应的区间和即可。详细细节见下面的代码。

Code

const int N = 3e5 + 5;
int cnt = 0;
int f[3][N][20];//注意数组越界
int mp[N];

int main()
{
	IOS;
	int n, q; cin >> n >> q;
	string s; cin >> s;
	s = " " + s;

	int t = log(n) / log(2) + 1;
	for (int i = 0; i < t; i++)
		for (int j = 1 << i; j < 1 << (i + 1); j++)
			mp[j] = i;//注意数组越界
    assert(1 << t < 3e5);
	  
	for (int k = 0; k < 3; k++)
		for (int j = 1; j <= n; j++)
			if (s[j] == 'W') f[k][j][0] = 1;
			else if (s[j] == 'L' && k) f[k][j][0] = -1;
	for (int j = 1; j < t; j++)
		for (int i = 1; i <= n - (1 << j) + 1; i++)
		{
			int p = i + (1 << (j - 1));
			f[0][i][j] = f[0][i][j - 1] + f[(0 + f[0][i][j - 1]) % 3][p][j - 1];
			f[1][i][j] = f[1][i][j - 1] + f[(1 + f[1][i][j - 1]) % 3][p][j - 1];
			f[2][i][j] = f[2][i][j - 1] + f[(2 + f[2][i][j - 1]) % 3][p][j - 1];
            //假设第一维的值为k
            //注意:不能像上面的预处理一样单独循环三遍不同的k,因为当前状态的k可能会用到不同k值的状态
		}

	int l, r, p;
	while (q--)
	{
		int ans;
		cin >> l >> r >> ans;
		//倍增思想的应用
		while (l <= r)
		{
			ans += f[ans % 3][l][mp[r - l + 1]];
			l += 1 << mp[r - l + 1];
		}
		cout << ans << endl;
	}

	return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

to cling

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值