逻辑斯特 + 神经网络梯度下降公式推导 + 向量化

全部推导来自吴恩达老师的视频课,下面仅作整理

逻辑斯特

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

神经网络

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
循环神经网络(RNN)中的梯度消失问题是由于反向传播算法中的链式法则导致的。如果在RNN中使用标准的反向传播算法,每个时间步的梯度将乘以一个矩阵,这个矩阵也就是RNN的权重矩阵。如果这个权重矩阵的所有特征值都小于1,那么在反向传播中,梯度会在时间步骤中指数级地减小,这就是所谓的梯度消失问题。 具体地,我们可以考虑一个时间步骤为t的RNN单元,其输入为$x_t$,输出为$h_t$,权重矩阵为$W$,激活函数为$f$。假设我们的目标是最小化损失函数$L$,则RNN的参数可以通过反向传播算法来更新。 对于第$t$个时间步骤的参数更新,我们需要计算$L$对$h_t$的梯度,即$\frac{\partial L}{\partial h_t}$。由于$h_t$同时影响到后续时间步骤的输出,我们还需要计算$L$对后续时间步骤的$h_{t+1}, h_{t+2}, ...$的梯度,即$\frac{\partial L}{\partial h_{t+i}}$。根据链式法则,$\frac{\partial L}{\partial h_{t+i}}$可以表示为: $$ \frac{\partial L}{\partial h_{t+i}} = \frac{\partial L}{\partial h_{t+i-1}} \frac{\partial h_{t+i-1}}{\partial h_{t+i}} = \frac{\partial L}{\partial h_{t+i-1}} W $$ 其中,$\frac{\partial h_{t+i-1}}{\partial h_{t+i}}$就是RNN的权重矩阵$W$。因此,我们可以得到: $$ \frac{\partial L}{\partial h_t} = \sum_{i=t}^{T} \frac{\partial L}{\partial h_i} \frac{\partial h_i}{\partial h_t} = \sum_{i=t}^{T} \frac{\partial L}{\partial h_i} \prod_{j=t+1}^{i} W $$ 其中,$T$是序列的长度。从上面的公式可以看出,如果矩阵$W$的所有特征值都小于1,那么在求解$\frac{\partial L}{\partial h_t}$时,梯度会在每个时间步骤中指数级地减小,从而导致梯度消失问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

to cling

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值