欢迎大家关注,文末有联系方式
一项目简介
本论文基于SVM算法,设计并实现了一款电影用户分析预测系统。该系统主要针对电影产业,通过对用户行为数据的分析,可以预测电影的票房、口碑等指标,为电影制片方和影院提供参考依据。本文首先对SVM算法进行了介绍,阐述了其在分类问题上的优势,并对该算法进行了优化,提高了系统的预测精度。其次,系统实现方面,我们采集了大量的用户数据,并通过数据清洗和预处理等过程,获得了高质量的数据集。然后,我们构建了SVM模型,并对该模型进行了训练和测试,结果表明该模型在电影用户分析预测方面具有较高的准确度和稳定性。最后,我们将该系统应用于实际电影数据的分析,证明了该系统在电影行业的实际应用价值。
关键词:电影用户分析预测系统; Django;MySql数据库
二、技术说明
技术简单说明
开发语言:Python
框架:flask
Python版本:python3.7.7
数据库:mysql 5.7(一定要5.7版本)
数据库工具:Navicat11
开发软件:PyCharm
浏览器:谷歌浏览器
三、功能介绍
3.1 系统功能结构设计
根据现实需要,此系统我们设计出一下功能,主要有以下功能模板。
1.前台功能:主页、电影院信息、电影新闻娱乐。
2.管理员功能:电影管理、订单管理、用户管理、轮播图管理、评论管理、影片分类管理、账户管理、新闻资讯管理。
在系统的功能设计方面,电影用户分析预测系统的设计目标是便于用户可以更方便观影,因此抽取了满足管理员、用户基本业务需求的基本用例,如图3.1、3.2所示。
图3.1 管理员功能用例图
图3.2 用户功能用例图
四、系统实现
五. 参考文献
[1]赵劲松.基于数据挖掘与隐私保护技术的人力资源双向推荐系统研究[D].西安:西安电子科技大学,2020.
[2]数说[J].人力资源,2021,18:122-123.
[3]庞丽,彭立伟,余豪,夏童,赵付英.基于Python的就业信息获取与分析[J].现代计算机,2021:10.
[4]刘晓知.基于Python的招聘网站信息爬取与数据分析[J].电子测试,2020:12.
[5]葛琳,杨娜.Python招聘数据分析[J].计算机与网络,2020:16.
[6]王家华.基于深度学习的电影个性化推荐算法研究[D].华中师范大学,2020,71(02)
[7]富泽萌.基于社交网络分析的电影票房预测系统的设计与实现[D].北京邮电大学,2019,82(08)
[8]海阔,海翔宇.电影大数据国际文献综述[J].新闻爱好者,2018,5(05):92-96
[9]杨姝颖.面向视频监控场景的人群分析[D].上海交通大学,2018,89(01)
[10]赵衍健.电影拍摄风险预测系统的设计与实现[D].哈尔滨工业大学,2017,86(02)
[11]王艳,金天星.市场营销与风险评估 双重视角下的电影票房预测——以中影集团推出电影票房量化分析系统为例[J].中国电影市场,2012,2(03):11-12
六、 文章目录
目 录
1 引言 1
1.1 研究背景 1
1.2 研究现状 1
1.3 研究意义 2
1.4 可行性研究 2
1.4.1 财务可行性 2
1.4.2 技术可行性 3
1.4.3 运行可行性 3
1.5 本论文的结构安排 3
1.6 本章小结 3
2 开发技术与环境配置 4
2.1 Python编程语言 4
2.2 B/S模式 4
2.3 MySQL数据库 5
2.4 Django框架介绍 6
2.5 Vue开发技术 6
2.6 JavaScript简介 7
2.7 SVM推荐算法 7
2.8 本章小结 8
3 系统分析与设计 9
3.1 概述 9
3.2 功能需求 9
3.3 非功能性需求 11
3.4 系统特色 11
3.5 界面需求 12
3.6 本章小结 12
4 系统总体设计 13
4.1 系统架构设计 13
4.1.1 体系结构 13
4.1.2 系统功能结构设计 13
4.2 数据库设计与实现 14
4.2.1 数据库概念结构设计 15
4.2.2 数据库具体设计 17
4.3 本章小结 17
5 系统功能的具体实现 18
5.1注册与登录模块 18
5.1.1登录模块 18
5.1.2注册模块 19
5.2管理员功能模块 20
5.2.1管理员 20
5.2.2用户管理 20
5.2.3订单管理 21
5.2.4电影管理 22
6 系统测试 22
6.1 测试定义 23
6.2 测试目的 23
6.3测试方案 24
6.4系统分析 24
7 结论 26
参考文献 27