大数据毕业设计hadoop+spark+hive知识图谱音乐推荐系统 音乐数据分析可视化大屏 网易云音乐数据采集分析可视化系 LSTM情感分析 大数据毕设 深度学习 机器学习 大数据毕业设计 人工智能

1、项目介绍
设计语言:Python语言+ SQL语言 +HTML语言
数据爬取:selenium模块+request库
数据存储:SQLite数据库 (通过Navicat软件查看)
后端搭建:Flask框架
前端搭建:Bootstrap框架
图表展现:ECharts可视化
词云制作:pyplot库+jieba库+wordcloud库+Image+numpy数据分析库

2、项目界面
(1)数据可视化展示–情感分类统计图

(2)系统首页–数据概况


(3)语种分类统计分析


(4)评论区用户年龄分布图

(5)评论区用户进村天数分布图

(6)性别年龄与听歌数量分布图

(7)歌词词云图

(8)数据管理

3、项目说明
(1)项目功能模块:
1.歌单预览页
2.歌单详情页(歌单标题、歌单作者、作者url、歌单创建日期、
歌单收藏量、歌单分享量、歌单评论数、歌单标签、歌单介绍、歌单歌曲数量)
3.歌单内音乐(歌曲id、标题、时长、歌手、专辑、歌曲url)
4.歌曲详情(歌曲id、歌曲标题、歌手、专辑、歌词、评论数、评论内容)
5.歌曲歌单评论内容(歌单歌曲辨识id、评论者id、评论者名、评论内容、
评论时间、评论点赞量、评论者url-地区累计听歌量)
1.数据库可视化:用户搜索关键词,完成相应内容可视化的展现。
1.数据呈现的多样化:多种图表形式。(用户活跃时间分布、用户地域分布、
歌单标签排名、歌曲情绪、评论区词云、歌单歌曲词云、)
2.数据维度的设计:能够从不同维度的数据分析,为用户提供更多的价值
3.界面表现的美化(可点击保存词云图片,根据歌曲id生成评论区词云、根据歌单id生成歌单词云)

(2)本系统主要研究从如何采集数据到如何搭建Web可视化图表的过程展开研究,包括但不限于所需技术和原理说明,采集数据的需求、手段和实现思路,对采集数据文本进行预处理即数据清洗与永久性数据库存储,对可视化web平台的构建与可视化图表的实现。本系统希望所作分析能为网易云音乐平台提供相应的歌单、歌曲的播放、收藏、分享、评论量一定的预测参考信息,也希望能为平台用户群体提供关于如何创建以及如何选择优质的歌单的参考;对网易云音乐平台如何提高用户使用率、活跃率、增强用户粘性以及给用户推送音乐信息具有一定的参考价值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值