java+mysql基于springboot+vue的协同过滤算法商品推荐系统

本文介绍了基于Java+MySQL+SpringBoot的协同过滤算法商品推荐系统,阐述了协同过滤的用户和物品两种过滤方式,讨论了系统的技术选型、界面设计及关键代码,展示了系统的功能模块和实现流程。
摘要由CSDN通过智能技术生成

很多朋友发现后期找不到文章,收藏关注不迷路

项目介绍

协同过滤算法是一种常用的商品推荐系统算法,它基于用户行为数据和商品相似度,通过分析用户的历史行为和偏好来预测用户对其他商品的喜好,并向用户推荐相关的商品。

协同过滤算法主要有两种类型:基于用户的协同过滤和基于物品的协同过滤。

基于用户的协同过滤算法:
这种算法首先找出与目标用户具有相似兴趣爱好的其他用户,然后根据这些相似用户的行为数据,推荐他们感兴趣的商品给目标用户。算法的核心思想是:“用户A喜欢的商品X,用户B也喜欢商品X,那么用户A可能也会喜欢用户B喜欢的其他商品”。常见的方法包括计算用户之间的相似度,如余弦相似度、皮尔逊相关系数等。

基于物品的协同过滤算法:
这种算法首先计算所有商品之间的相似度,然后根据用户对某个商品的评分情况,找出与该商品相似的其他商品进行推荐。算法的核心思想是:“用户喜欢商品A,商品B与商品A相似,那么用户也可能喜欢商品B”。常见的方法包括计算物品之间的相似度,如余弦相似度、Jaccard相似度等。

协同过滤算法的优点是能够根据用户的实际行为和偏好进行推荐,并且具有一定的个性化特点。然而,它也存在一些挑战,例如数据稀疏性、冷启动问题和算法的可解释性等。

为了提高推荐的准确性和效果,协同过滤算法通常会与其他推荐算法相结合,例如内容-based推荐、深度学习模型等。

技术介绍

1、管理员账号:abo 密码:abo
2、开发环境为Eclipse/idea,数据库为mysql 使用java语言开发。
3.配置好Tomcat并点击启动按钮即可运行
4.数据库连接src\main\resources\application.yml中修改
5.maven包版本apache-maven-3.3.9.
开发语言:Java
框架:SSM
前端框架:vue.js
JDK版本:JDK1.8+
服务器:tomcat8+
数据库工具:Navicat
开发软件:idea 支持eclipse

Springboot是当前最流向的一个框架,它的配置更加的简单,使开发变得更加的简单迅速。
Springboot的基础结构共三个文件,具体如下:
src/main/java:程序开发以及主程序入口;
src/main/resources:配置文件;
src/test/java:测试程序。
ssm的数据库配置默认支持两种格式的配置文件
1,application.properties
2,application.yaml

项目界面

在这里插入图片描述
在这里插入图片描述
协同过滤算法商品推荐系统利用网络沟通、计算机信息存储管理,有着与传统的方式所无法替代的优点。比如计算检索速度特别快、可靠性特别高、存储容量特别大、保密性特别好、可保存时间特别长、成本特别低等。在工作效率上,能够得到极大地提高,延伸至服务水平也会有好的收获,有了网络,协同过滤算法商品推荐系统的各方面的管理更加科学和系统,更加规范和简便。

协同过滤算法商品推荐系统主要包括两大功能模块,即用户功能模块和管理员功能模块。

;1;管理员模块:用户管理、商品类别管理、商品信息管理、系统管理、订单管理等功能模块。

;2;前台用户:首页、商品信息、商品资讯、个人中心、购物车功能。
在这里插入图片描述
在这里插入图片描述

关键代码


package com.controller;


import java.util.Arrays;
import java.util.Calendar;
import java.util.Date;
import java.util.Map;

import javax.servlet.http.HttpServletRequest;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.ResponseBody;
import org.springframework.web.bind.annotation.RestController;

import com.annotation.IgnoreAuth;
import com.baomidou.mybatisplus.mapper.EntityWrapper;
import com.entity.TokenEntity;
import com.entity.UserEntity;
import com.service.TokenService;
import com.service.UserService;
import com.utils.CommonUtil;
import com.utils.MPUtil;
import com.utils.PageUtils;
import com.utils.R;
import com.utils.ValidatorUtils;

/**
 * 登录相关
 */
@RequestMapping("users")
@RestController
public class UserController{
	
	@Autowired
	private UserService userService;
	
	@Autowired
	private TokenService tokenService;

	/**
	 * 登录
	 */
	@IgnoreAuth
	@PostMapping(value = "/login")
	public R login(String username, String password, String captcha, HttpServletRequest request) {
		UserEntity user = userService.selectOne(new EntityWrapper<UserEntity>().eq("username", username));
		if(user==null || !user.getPassword().equals(password)) {
			return R.error("账号或密码不正确");
		}
		String token = tokenService.generateToken(user.getId(),username, "users", user.getRole());
		return R.ok().put("token", token);
	}
	
	/**
	 * 注册
	 */
	@IgnoreAuth
	@PostMapping(value = "/register")
	public R register(@RequestBody UserEntity user){
//    	ValidatorUtils.validateEntity(user);
    	if(userService.selectOne(new EntityWrapper<UserEntity>().eq("username", user.getUsername())) !=null) {
    		return R.error("用户已存在");
    	}
        userService.insert(user);
        return R.ok();
    }

	/**
	 * 退出
	 */
	@GetMapping(value = "logout")
	public R logout(HttpServletRequest request) {
		request.getSession().invalidate();
		return R.ok("退出成功");
	}
	
	/**
     * 密码重置
     */
    @IgnoreAuth
	@RequestMapping(value = "/resetPass")
    public R resetPass(String username, HttpServletRequest request){
    	UserEntity user = userService.selectOne(new EntityWrapper<UserEntity>().eq("username", username));
    	if(user==null) {
    		return R.error("账号不存在");
    	}
    	user.setPassword("123456");
        userService.update(user,null);
        return R.ok("密码已重置为:123456");
    }
	
	/**
     * 列表
     */
    @RequestMapping("/page")
    public R page(@RequestParam Map<String, Object> params,UserEntity user){
        EntityWrapper<UserEntity> ew = new EntityWrapper<UserEntity>();
    	PageUtils page = userService.queryPage(params, MPUtil.sort(MPUtil.between(MPUtil.allLike(ew, user), params), params));
        return R.ok().put("data", page);
    }

	/**
     * 列表
     */
    @RequestMapping("/list")
    public R list( UserEntity user){
       	EntityWrapper<UserEntity> ew = new EntityWrapper<UserEntity>();
      	ew.allEq(MPUtil.allEQMapPre( user, "user")); 
        return R.ok().put("data", userService.selectListView(ew));
    }

    /**
     * 信息
     */
    @RequestMapping("/info/{id}")
    public R info(@PathVariable("id") String id){
        UserEntity user = userService.selectById(id);
        return R.ok().put("data", user);
    }
    
    /**
     * 获取用户的session用户信息
     */
    @RequestMapping("/session")
    public R getCurrUser(HttpServletRequest request){
    	Long id = (Long)request.getSession().getAttribute("userId");
        UserEntity user = userService.selectById(id);
        return R.ok().put("data", user);
    }

    /**
     * 保存
     */
    @PostMapping("/save")
    public R save(@RequestBody UserEntity user){
//    	ValidatorUtils.validateEntity(user);
    	if(userService.selectOne(new EntityWrapper<UserEntity>().eq("username", user.getUsername())) !=null) {
    		return R.error("用户已存在");
    	}
        userService.insert(user);
        return R.ok();
    }

    /**
     * 修改
     */
    @RequestMapping("/update")
    public R update(@RequestBody UserEntity user){
//        ValidatorUtils.validateEntity(user);
    	UserEntity u = userService.selectOne(new EntityWrapper<UserEntity>().eq("username", user.getUsername()));
    	if(u!=null && u.getId()!=user.getId() && u.getUsername().equals(user.getUsername())) {
    		return R.error("用户名已存在。");
    	}
        userService.updateById(user);//全部更新
        return R.ok();
    }

    /**
     * 删除
     */
    @RequestMapping("/delete")
    public R delete(@RequestBody Long[] ids){
        userService.deleteBatchIds(Arrays.asList(ids));
        return R.ok();
    }
}

目录

目 录
目 录 III
1 绪论 1
1.1 研究背景 1
1.2 目的和意义 1
1.3 论文结构安排 2
2 相关技术 3
2.1 Springboot框架介绍 3
2.2 B/S结构介绍 3
2.3 Mysql数据库介绍 4
3 系统分析 6
3.1 系统可行性分析 6
3.1.1 技术可行性分析 6
3.1.2 经济可行性分析 6
3.1.3 运行可行性分析 6
3.2 系统性能分析 7
3.2.1 易用性指标 7
3.2.2 可扩展性指标 7
3.2.3 健壮性指标 7
3.2.4 安全性指标 8
3.3 系统流程分析 8
3.3.1 操作流程分析 8
3.3.2 登录流程分析 9
3.3.3 信息添加流程分析 10
3.3.4 信息删除流程分析 11
4 系统设计 12
4.1 系统概要设计 12
4.2 系统功能结构设计 12
4.3 数据库设计 13
4.3.1 数据库E-R图设计 13
4.3.2 数据库表结构设计 14
5 系统实现 17
5.1用户部分功能17
5.2 管理员部分功能展示

6 系统测试
6.1 系统测试的特点 
6.2 系统功能测试
6.2.1 登录功能测试
6.2.2 添加类别功能测试
6.3 测试结果分析
结 论
致 谢
参考文献

项目完整可用,配合压缩包内数据库可直接运行使用。 eclipse+mysql5.7+jdk1.8 功能:推荐引擎利用特殊的信息过滤(IF,Information Filtering)技术,将不同的内容(例如电影、音乐、书籍、新闻、图片、网页等)推荐给可能感兴趣的用户。通常情况下,推荐引擎的实现是通过将用户的个人喜好与特定的参考特征进行比较,并试图预测用户对一些未评分项目的喜好程度。参考特征的选取可能是从项目本身的信息中提取的,或是基于用户所在的社会或社团环境。 根据如何抽取参考特征,我们可以将推荐引擎分为以下四大类: • 基于内容的推荐引擎:它将计算得到并推荐给用户一些与该用户已选择过的项目相似的内容。例如,当你在网上购书时,你总是购买与历史相关的书籍,那么基于内容的推荐引擎就会给你推荐一些热门的历史方面的书籍。 • 基于协同过滤的推荐引擎:它将推荐给用户一些与该用户品味相似的其他用户喜欢的内容。例如,当你在网上买衣服时,基于协同过滤的推荐引擎会根据你的历史购买记录或是浏览记录,分析出你的穿衣品位,并找到与你品味相似的一些用户,将他们浏览和购买的衣服推荐给你。 • 基于关联规则的推荐引擎:它将推荐给用户一些采用关联规则发现算法计算出的内容。关联规则的发现算法有很多,如 Apriori、AprioriTid、DHP、FP-tree 等。 • 混合推荐引擎:结合以上各种,得到一个更加全面的推荐效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值