python人脸识别系统 Tensorflow 人脸检测 Python语言 facenet人脸识别算法 毕业设计(源码)

1、项目介绍

技术栈:
Python语言、facenet人脸识别算法 Tensorflow MySQL数据库,
可实现人脸的录入,人脸识别,识别记录查询,
基于Tensorflow和mysql数据库实现的人脸识别系统

Python语言提供了丰富的图像处理和机器学习库,如OpenCV、dlib、Tensorflow等,这些库可以辅助实现人脸检测、对齐、特征提取等功能;而facenet是一种基于深度学习的人脸识别算法,可以实现高精度的特征提取。MySQL数据库提供了数据存储和查询的功能,可以方便地存储和管理人脸识别系统中的数据。

综上所述,Python语言、facenet人脸识别算法、Tensorflow和MySQL数据库合作使用,可以搭建出一个完整的人脸识别系统。

2、项目界面

(1)人脸识别界面

在这里插入图片描述

(2)识别记录统计

在这里插入图片描述

(3)人脸识别记录

在这里插入图片描述

(4)录入人脸

在这里插入图片描述

(5)管理员登录

在这里插入图片描述

(6)人脸识别检测

在这里插入图片描述

(7)MySQL数据库数据管理

在这里插入图片描述

3、项目说明

人脸识别系统是一种通过计算机视觉技术,对人脸进行采集、特征提取、特征匹配等处理,实现自动识别的系统。通常包括人脸采集、人脸检测、人脸对齐、特征提取、特征匹配等模块。Python语言和facenet人脸识别算法是实现该系统的关键技术。

人脸识别系统一般包括以下几个步骤:

人脸采集:使用摄像头或者照片等方式采集人脸图像数据。

人脸检测:使用OpenCV等库,对采集到的图像进行人脸检测,找出图像中的人脸区域。

人脸对齐:使用dlib等库,对人脸图像进行对齐操作,将人脸图像转换为标准姿态。

特征提取:使用facenet等人脸识别算法,对人脸图像进行特征提取,生成对应的128维特征向量。

特征匹配:使用L2距离等方法,对查询人脸图像和数据库中已知人脸图像的特征向量进行比对,找出最相似的人脸。

识别记录查询:将识别结果保存在MySQL数据库中,用户可以通过查询数据库,查看历史识别记录。

Python语言提供了丰富的图像处理和机器学习库,如OpenCV、dlib、Tensorflow等,这些库可以辅助实现人脸检测、对齐、特征提取等功能;而facenet是一种基于深度学习的人脸识别算法,可以实现高精度的特征提取。MySQL数据库提供了数据存储和查询的功能,可以方便地存储和管理人脸识别系统中的数据。

综上所述,Python语言、facenet人脸识别算法、Tensorflow和MySQL数据库合作使用,可以搭建出一个完整的人脸识别系统。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值