1、项目介绍
技术栈:
Python语言、facenet人脸识别算法 Tensorflow MySQL数据库,
可实现人脸的录入,人脸识别,识别记录查询,
基于Tensorflow和mysql数据库实现的人脸识别系统
Python语言提供了丰富的图像处理和机器学习库,如OpenCV、dlib、Tensorflow等,这些库可以辅助实现人脸检测、对齐、特征提取等功能;而facenet是一种基于深度学习的人脸识别算法,可以实现高精度的特征提取。MySQL数据库提供了数据存储和查询的功能,可以方便地存储和管理人脸识别系统中的数据。
综上所述,Python语言、facenet人脸识别算法、Tensorflow和MySQL数据库合作使用,可以搭建出一个完整的人脸识别系统。
2、项目界面
(1)人脸识别界面
(2)识别记录统计
(3)人脸识别记录
(4)录入人脸
(5)管理员登录
(6)人脸识别检测
(7)MySQL数据库数据管理
3、项目说明
人脸识别系统是一种通过计算机视觉技术,对人脸进行采集、特征提取、特征匹配等处理,实现自动识别的系统。通常包括人脸采集、人脸检测、人脸对齐、特征提取、特征匹配等模块。Python语言和facenet人脸识别算法是实现该系统的关键技术。
人脸识别系统一般包括以下几个步骤:
人脸采集:使用摄像头或者照片等方式采集人脸图像数据。
人脸检测:使用OpenCV等库,对采集到的图像进行人脸检测,找出图像中的人脸区域。
人脸对齐:使用dlib等库,对人脸图像进行对齐操作,将人脸图像转换为标准姿态。
特征提取:使用facenet等人脸识别算法,对人脸图像进行特征提取,生成对应的128维特征向量。
特征匹配:使用L2距离等方法,对查询人脸图像和数据库中已知人脸图像的特征向量进行比对,找出最相似的人脸。
识别记录查询:将识别结果保存在MySQL数据库中,用户可以通过查询数据库,查看历史识别记录。
Python语言提供了丰富的图像处理和机器学习库,如OpenCV、dlib、Tensorflow等,这些库可以辅助实现人脸检测、对齐、特征提取等功能;而facenet是一种基于深度学习的人脸识别算法,可以实现高精度的特征提取。MySQL数据库提供了数据存储和查询的功能,可以方便地存储和管理人脸识别系统中的数据。
综上所述,Python语言、facenet人脸识别算法、Tensorflow和MySQL数据库合作使用,可以搭建出一个完整的人脸识别系统。