收藏关注不迷路!!
🌟文末获取源码+数据库🌟
感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
前言
Python基于深度学习的老年旅游推荐系统是一个专门针对老年人群体设计的旅游推荐解决方案。该系统利用深度学习的强大能力,分析老年人的旅游偏好、身体条件、兴趣爱好等多方面因素,为他们提供个性化的旅游推荐服务。以下是对该系统的详细介绍:
一、系统背景与意义
随着社会的发展和人口老龄化的加剧,老年旅游市场逐渐兴起。然而,老年人由于身体条件、兴趣爱好等方面的特殊性,对旅游产品的需求也呈现出多样化的特点。传统的旅游推荐系统往往无法准确捕捉老年人的需求,导致推荐效果不佳。因此,设计和实现一个基于深度学习的老年旅游推荐系统,具有重要意义。该系统可以深入分析老年人的旅游偏好,为他们提供更加精准、个性化的旅游推荐,提高旅游体验和服务质量。
详细视频演示
文章底部名片,联系我看更详细的演示视频
一、项目介绍
开发语言:Python
python框架:Django
软件版本:python3.7/python3.8
数据库:mysql 5.7或更高版本
数据库工具:Navicat11
开发软件:PyCharm/vs code
前端框架:vue.js
二、功能介绍
该系统通常包括以下几个核心模块:
用户画像构建模块:
收集老年人的基本信息(如年龄、性别、健康状况等)和旅游历史数据。
利用深度学习技术对用户数据进行建模和分析,构建用户画像。
用户画像包括老年人的旅游偏好、兴趣点、消费习惯等方面的信息。
旅游资源整合模块:
收集各类旅游资源信息,包括旅游景点、酒店、交通方式等。
对旅游资源进行分类和标注,以便后续推荐使用。
可以考虑与旅游供应商合作,获取更丰富的旅游资源信息。
推荐算法模块:
利用深度学习算法(如神经网络、卷积神经网络等)对用户画像和旅游资源进行匹配和推荐。
可以考虑使用协同过滤、基于内容的推荐等混合推荐策略,提高推荐的准确性和多样性。
根据老年人的身体状况和兴趣爱好,对推荐结果进行筛选和优化。
用户交互模块:
提供友好的用户界面和交互方式,方便老年人查看和选择推荐结果。
可以设置过滤条件、排序方式等功能,以便老年人根据自己的需求进行筛选。
提供用户反馈功能,收集老年人对推荐结果的满意度和意见,用于优化系统性能。
三、核心代码
部分代码:
def users_login(request):
if request.method in ["POST", "GET"]:
msg = {'code': normal_code, "msg": mes.normal_code}
req_dict = request.session.get("req_dict")
if req_dict.get('role')!=None:
del req_dict['role']
datas = users.getbyparams(users, users, req_dict)
if not datas:
msg['code'] = password_error_code
msg['msg'] = mes.password_error_code
return JsonResponse(msg)
req_dict['id'] = datas[0].get('id')
return Auth.authenticate(Auth, users, req_dict)
def users_register(request):
if request.method in ["POST", "GET"]:
msg = {'code': normal_code, "msg": mes.normal_code}
req_dict = request.session.get("req_dict")
error = users.createbyreq(users, users, req_dict)
if error != None:
msg['code'] = crud_error_code
msg['msg'] = error
return JsonResponse(msg)
def users_session(request):
'''
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code,"msg":mes.normal_code, "data": {}}
req_dict = {"id": request.session.get('params').get("id")}
msg['data'] = users.getbyparams(users, users, req_dict)[0]
return JsonResponse(msg)
def users_logout(request):
if request.method in ["POST", "GET"]:
msg = {
"msg": "退出成功",
"code": 0
}
return JsonResponse(msg)
def users_page(request):
'''
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code,
"data": {"currPage": 1, "totalPage": 1, "total": 1, "pageSize": 10, "list": []}}
req_dict = request.session.get("req_dict")
tablename = request.session.get("tablename")
try:
__hasMessage__ = users.__hasMessage__
except:
__hasMessage__ = None
if __hasMessage__ and __hasMessage__ != "否":
if tablename != "users":
req_dict["userid"] = request.session.get("params").get("id")
if tablename == "users":
msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
msg['data']['pageSize'] = users.page(users, users, req_dict)
else:
msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
msg['data']['pageSize'] = [],1,0,0,10
return JsonResponse(msg)
四、效果图
五、文章目录
目 录
摘 要 1
Abstract 2
第1章 绪 论 5
1.1研究背景 5
1.2研究的目的 5
1.3国内外研究现状 6
1.4 课题研究的主要内容 6
第2章 相关技术 7
2.1 Python语言 7
2.2 Django框架 7
2.3 MySQL数据库 7
2.4 VUE技术 8
2.5 Hadoop介绍 9
2.6 推荐算法介绍 9
2.7系统运行环境 9
2.8本章小结 10
第3章 系统分析 11
3.1系统可行性分析 11
3.1.1经济可行性分析 11
3.1.2技术可行性分析 11
3.1.3操作可行性分析 11
3.2系统现状分析 12
3.3系统用例分析 12
3.4系统流程分析 14
3.5本章小结 15
第4章 系统设计 16
4.1系统功能结构设计图 16
4.2数据库设计 16
4.3本章小结 30
第5章 系统实现 31
5.1系统功能实现 31
5.1.1前台首页页面实现 31
5.1.2个人中心页面实现 32
5.2 后台模块实现 33
5.2.1管理员模块实现 33
5.2.2服务人员模块实现 38
5.3本章小结 38
第6章 系统测试 39
6.1系统测试目的 39
6.2系统功能测试 39
6.3系统测试结论 40
6.4本章小结 40
结 论 41
参考文献 42
致 谢 43
六 、源码获取
下方名片联系我即可!!