问题
给出一个多项式 A ( x ) A(x) A(x),求它的 m m m 次幂即 A m ( x ) A^m(x) Am(x)。
思路
很容易想到和普通快速幂类似的做法。其中一次乘法需要 O ( n log 2 n ) O(n\log_2n) O(nlog2n),总共需要 O ( log 2 m ) O(\log_2m) O(log2m) 次运算,总复杂度为 O ( n log 2 n log 2 m ) O(n\log_2n\log_2m) O(nlog2nlog2m)。
有的时候, m m m 会超过模数。注意到 a m = a m % p a^m=a^{m\%p} am=am%p,因此还可以优化到 O ( n log 2 n log 2 p ) O(n\log_2n\log_2p) O(nlog2nlog2p)。但对于 n n n 比较大的的情况,是会超时的。
注意到 exp \exp exp 和 ln \ln ln 互为逆运算,也就是说 e ln a = a e^{\ln a}=a elna=a,那么 a m = ( e ln a ) m = e m ln a a^m=\left(e^{\ln a}\right)^m=e^{m\ln a} am=(elna)