多项式快速幂

本文详细介绍了如何使用快速幂算法求解多项式的幂,并探讨了算法的优化,包括将常数项化为1,利用指数与对数的逆运算性质,以及处理大指数和模数的情况。此外,提供了C++代码实现,但注意未进行所有优化,可能会导致超时。
摘要由CSDN通过智能技术生成

文章目录

问题

给出一个多项式 A ( x ) A(x) A(x),求它的 m m m 次幂即 A m ( x ) A^m(x) Am(x)

思路

很容易想到和普通快速幂类似的做法。其中一次乘法需要 O ( n log ⁡ 2 n ) O(n\log_2n) O(nlog2n),总共需要 O ( log ⁡ 2 m ) O(\log_2m) O(log2m) 次运算,总复杂度为 O ( n log ⁡ 2 n log ⁡ 2 m ) O(n\log_2n\log_2m) O(nlog2nlog2m)
有的时候, m m m 会超过模数。注意到 a m = a m % p a^m=a^{m\%p} am=am%p,因此还可以优化到 O ( n log ⁡ 2 n log ⁡ 2 p ) O(n\log_2n\log_2p) O(nlog2nlog2p)。但对于 n n n 比较大的的情况,是会超时的。
注意到 exp ⁡ \exp exp ln ⁡ \ln ln 互为逆运算,也就是说 e ln ⁡ a = a e^{\ln a}=a elna=a,那么 a m = ( e ln ⁡ a ) m = e m ln ⁡ a a^m=\left(e^{\ln a}\right)^m=e^{m\ln a} am=(elna)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值