数学
文章平均质量分 88
各种信息学奥赛中用到的数学知识
徐宏烯ด้้้้้็้้
这个作者很懒,什么都没留下…
展开
-
多项式反三角函数学习笔记
问题给出一个 n−1n-1n−1 次多项式 F(x)F(x)F(x) 保证常数项为 000 ,求 arcsinF(x)\arcsin F(x)arcsinF(x) 和 arctanF(x)\arctan F(x)arctanF(x) 的对 xnx^nxn 取模后的结果。思路对 arcsinF(x)\arcsin F(x)arcsinF(x) 求导再积分,则 arcsinF(x)=∫F′(x)1−F2(x)\arcsin F(x)=\int\frac{F'(x)}{\sqrt{1-F^2(x)}原创 2021-03-26 14:01:54 · 526 阅读 · 0 评论 -
多项式三角函数学习笔记
文章目录问题前置知识思路代码问题给出一个 n−1n-1n−1 次多项式 A(x)A(x)A(x) 和 type\text{type}type,如果 type=0\text{type}=0type=0 输出 sinA(x)\sin A(x)sinA(x) 的结果,否则则输出 cosA(x)\cos A(x)cosA(x) 的结果,其中 a0=0a_0=0a0=0。前置知识欧拉公式对于一个数 zzz ,有{eiz=cosz+isinze−iz=cosz−isinz\left\{\beg原创 2021-03-25 13:54:09 · 1010 阅读 · 0 评论 -
多项式开根学习笔记
文章目录问题思路代码问题给定一个 n−1n-1n−1 次多项式 A(x)A(x)A(x) ,求一个 n−1n-1n−1 次多项式 B(x)B(x)B(x),使得 B2(x)=A(x)B^2(x)=A(x)B2(x)=A(x)。思路考虑倍增。假设已经求出 n−1n-1n−1 次多项式 B0(x)B_0(x)B0(x) 使得 B02(x)≡A(x) (mod xn)B_0^2(x)\equiv A(x)\ (\text{mod}\ x^n)B02(x)≡A(x) (mo原创 2021-03-24 13:29:22 · 192 阅读 · 0 评论 -
多项式快速幂
文章目录问题思路代码问题给出一个多项式 A(x)A(x)A(x),求它的 mmm 次幂即 Am(x)A^m(x)Am(x)。思路很容易想到和普通快速幂类似的做法。其中一次乘法需要 O(nlog2n)O(n\log_2n)O(nlog2n),总共需要 O(log2m)O(\log_2m)O(log2m) 次运算,总复杂度为 O(nlog2nlog2m)O(n\log_2n\log_2m)O(nlog2nlog2m)。有的时候,mmm 会超过模数。注意到 am=am%pa^m=a^{m原创 2021-03-23 13:26:48 · 543 阅读 · 0 评论 -
多项式exp学习笔记
文章目录问题前置知识思路代码问题现在有一个多项式 A(x)A(x)A(x),保证其常数项为 000,要求多项式 B(x)=eA(x)B(x)=e^{A(x)}B(x)=eA(x)。前置知识泰勒多项式对于一个任何一个函数 f(x)f(x)f(x),在点 x0x_0x0 附近都有f(x)=∑i=0n1i!f(i)(x0)(x−x0)i+Rn(x)f(x)=\sum_{i=0}^n\frac{1}{i!}f^{(i)}(x_0)(x-x_0)^i+R_n(x)f(x)=i=0∑ni!1f(i)(x原创 2021-03-22 13:47:55 · 490 阅读 · 0 评论 -
多项式(带余)除法学习笔记
文章目录问题思路代码问题现在给出 nnn 次多项式 A(x)A(x)A(x) 和 mmm 次多项式 B(x)B(x)B(x),求出它们的商 C(x)C(x)C(x) 和余数 D(x)D(x)D(x)。也就是说,找出 n−mn-mn−m 次多项式 C(x)C(x)C(x) 和次数小于 mmm 的多项式 D(x)D(x)D(x) 使得 A(x)=B(x)C(x)+D(x)A(x)=B(x)C(x)+D(x)A(x)=B(x)C(x)+D(x)。系数对 998244353998244353998244353原创 2021-03-18 13:46:58 · 2221 阅读 · 0 评论 -
多项式对数函数学习笔记
文章目录问题前置知识方法代码问题现在给出一个 nnn 次多项式 A(x)A(x)A(x),其中它的常数项为 111,现在要求解 lnA(x)\ln A(x)lnA(x)。前置知识这里粗略介绍一些微积分的常识,知道的可以跳过,看不懂的直接看别的博客。求导现在有一个函数 f(x)f(x)f(x),对应着平面直角坐标系上的一条曲线。现在我们要求它在某处(x0x_0x0)切线的斜率。显然斜率为 limx→x0f(x)−f(x0)x−x0\lim_{x\rightarrow x_0}\frac{f(原创 2021-03-12 23:03:17 · 442 阅读 · 0 评论 -
多项式乘法逆学习笔记
文章目录问题方法代码问题现在有一个给定的 n−1n-1n−1 次多项式 F(x)F(x)F(x) ,求解 n−1n-1n−1 多项式 G(x)G(x)G(x),使得 G(x)≡F−1(x) (mod xn)G(x)\equiv F^{-1}(x)\ (\text{mod}\ x^n)G(x)≡F−1(x) (mod xn),其中 F(x)F−1(x)=1F(x)F^{-1}(x)=1F(x)F−1(x)=1,系数对 998244353998244353998244原创 2021-03-11 14:03:56 · 453 阅读 · 0 评论 -
快速数论变换NTT学习笔记
在学 NTT 之前,建议大家先了解一下 快速傅里叶变换(FFT)文章目录原创 2021-03-10 13:59:18 · 329 阅读 · 1 评论 -
快速傅里叶变换FFT学习笔记
文章目录问题背景前置知识问题背景多项式无论在信息学还是在数学上都有重要应用。在信息学竞赛中,经常需要借助多项式解决问题,涉及到关于多项式的各种运算。对于两个次数为 nnn 的多项式其中加减法均可以在 O(n)O(n)O(n) 内算完,而一般来说乘法需要 O(n2)O(n^2)O(n2) 来解决。但多项式乘法作为各种运算的基础,需要用更快的速度求出。前置知识...原创 2021-03-04 13:41:27 · 405 阅读 · 0 评论 -
拉格朗日插值法学习笔记
文章目录STEP1 问题引入STEP2 拉格朗日插值公式存在性唯一性STEP3 代码模板STEP4 经典例题The Sum of the k-th Powers(CF622F)STEP1 问题引入现在给定在平面直角坐标系中的 k+1k+1k+1 个点,记 Pi(xi,yi)P_i(x_i,y_i)Pi(xi,yi)。现在要求一个 kkk 次多项式函数 y=∑i=0kaixiy=\sum_{i=0}^ka_ix^iy=∑i=0kaixi,使得它经过这 k+1k+1k+1 个点,即 ∀i∣0≤i原创 2021-01-29 13:46:33 · 463 阅读 · 0 评论