煤矿井下类被智慧矿井智能分析数据集
One——数据1包含煤矿采掘工作面工人安全帽检测,工人行为检测(行走,站立,坐,操作,弯腰,靠,摔,爬),液压支撑防护(液压支撑防护板所有角度如防护板0到30度,30度到60…等多角度检测,支撑异常,剪煤机等)检测,采煤人检测,运煤线检测,煤块检测,数据集共22GB,13万张真实拍摄影像,yolo和coco两种标注格式。
YOLOv8 智慧矿井智能分析
import os
import torch
from IPython.display import Image, clear_output
from ultralytics import YOLO
# 设置随机种子以保证可重复性
torch.manual_seed(42)
# 定义数据集路径
dataset_dir = 'path/to/dataset'
# 创建YOLOv5的数据集配置文件
data_config = {
'train': os.path.join(dataset_dir, 'train/images'),
'val': os.path.join(dataset_dir, 'val/images'),
'test': os.path.join(dataset_dir, 'test/images'),
'nc': 16, # 类别数量
'names': [
'safety_hat', 'walking', 'standing', 'sitting', 'operating',
'bending', 'leaning', 'falling', 'climbing', 'hydraulic_support_0_30',
'hydraulic_support_30_60', 'hydraulic_support_60_90', 'hydraulic_support_abnormal',
'shearer', 'coal_miner', 'conveyor_belt', 'coal_piece'
] # 类别名称
}
with open(os.path.join(dataset_dir, 'data.yaml'), 'w') as f:
yaml.dump(data_config, f)
# 训练模型
model = YOLO('yolov8n.pt') # 加载预训练的YOLOv8n模型
results = model.train(
data=os.path.join(dataset_dir, 'data.yaml'),
epochs=100,
imgsz=640,
batch=16,
name='smart_mine_analysis',
project='runs/train'
)
# 评估模型
metrics = model.val()
# 可视化预测结果
source_image = '../path/to/dataset/test/sample.jpg' # 替换为你要测试的图片路径
results = model.predict(source=source_image, conf=0.25, iou=0.45, save=True, save_txt=True)
# 显示预测结果
Image(filename='runs/detect/predict/sample.jpg')
。你有一个包含煤矿采掘工作面工人安全帽检测、工人行为检测(行走、站立、坐、操作、弯腰、靠、摔、爬)、液压支撑防护检测(多角度检测,支撑异常,剪煤机等)、采煤人检测、运煤线检测和煤块检测的智慧矿井智能分析数据集。数据集共22GB,包含13万张真实拍摄影像,并且标注格式为YOLO和COCO两种格式。
我们将使用YOLOv8进行训练、评估和可视化预测结果。以下是详细的步骤和代码示例。

### 项目介绍
#### 数据准备
- **数据集**: 包含13万张图片及其对应的YOLO或COCO格式标注文件。
- **标注格式**: YOLO格式或COCO格式。
- **类别**:
- `safety_hat`: 安全帽
- `walking`: 行走
- `standing`: 站立
- `sitting`: 坐
- `operating`: 操作
- `bending`: 弯腰
- `leaning`: 靠
- `falling`: 摔
- `climbing`: 爬
- `hydraulic_support_0_30`: 液压支撑防护板0到30度
- `hydraulic_support_30_60`: 液压支撑防护板30到60度
- `hydraulic_support_60_90`: 液压支撑防护板60到90度
- `hydraulic_support_abnormal`: 支撑异常
- `shearer`: 剪煤机
- `coal_miner`: 采煤人
- `conveyor_belt`: 运煤线
- `coal_piece`: 煤块
#### 模型选择
- **YOLOv8**: 使用YOLOv8进行目标检测。YOLOv8是YOLO系列的最新版本,具有更高的性能和更好的精度。
- 。
-
文件输出:
runs/train/smart_mine_analysis/weights/best.pt
: 最佳模型权重。runs/val/exp/results.txt
: 验证结果。
-
图像输出:
runs/detect/predict/sample.jpg
: 带有预测边界的图像。
希望这些详细的信息和代码能够帮助你顺利实施和优化你的项目。如果你有任何进一步的问题或需要更多帮助,请随时提问!
运行步骤总结
-
安装YOLOv8:
pip install ultralytics
-
准备数据集:
- 确保数据集路径正确,并且包含训练集、验证集和测试集文件夹,以及对应的标注文件。
-
运行训练脚本:
python your_script_name.py
-
评估模型:
- 评估结果会在训练结束后自动输出在控制台和文件中。
-
可视化预测结果:
- 测试图像的结果会保存在
runs/detect/predict/
文件夹中,可以直接查看带有预测边界的图像。
- 测试图像的结果会保存在
希望这些详细的指导和代码示例能帮助你成功实现和优化你的智慧矿井智能