如何使用yolov8使用YOLOv8进行目标检测训练使用煤矿类——智慧煤矿矿井井工人行为检测及安全帽煤炭检测数据集 行走,站立,坐,操作,弯腰,靠,摔,爬

煤矿井下类被智慧矿井智能分析数据集在这里插入图片描述

One——数据1包含煤矿采掘工作面工人安全帽检测,工人行为检测(行走,站立,坐,操作,弯腰,靠,摔,爬),液压支撑防护(液压支撑防护板所有角度如防护板0到30度,30度到60…等多角度检测,支撑异常,剪煤机等)检测,采煤人检测,运煤线检测,煤块检测,数据集共22GB,13万张真实拍摄影像,yolo和coco两种标注格式。

YOLOv8 智慧矿井智能分析

import os
import torch
from IPython.display import Image, clear_output
from ultralytics import YOLO

# 设置随机种子以保证可重复性
torch.manual_seed(42)

# 定义数据集路径
dataset_dir = 'path/to/dataset'

# 创建YOLOv5的数据集配置文件
data_config = {
    'train': os.path.join(dataset_dir, 'train/images'),
    'val': os.path.join(dataset_dir, 'val/images'),
    'test': os.path.join(dataset_dir, 'test/images'),
    'nc': 16,  # 类别数量
    'names': [
        'safety_hat', 'walking', 'standing', 'sitting', 'operating', 
        'bending', 'leaning', 'falling', 'climbing', 'hydraulic_support_0_30', 
        'hydraulic_support_30_60', 'hydraulic_support_60_90', 'hydraulic_support_abnormal', 
        'shearer', 'coal_miner', 'conveyor_belt', 'coal_piece'
    ]  # 类别名称
}

with open(os.path.join(dataset_dir, 'data.yaml'), 'w') as f:
    yaml.dump(data_config, f)

# 训练模型
model = YOLO('yolov8n.pt')  # 加载预训练的YOLOv8n模型

results = model.train(
    data=os.path.join(dataset_dir, 'data.yaml'),
    epochs=100,
    imgsz=640,
    batch=16,
    name='smart_mine_analysis',
    project='runs/train'
)

# 评估模型
metrics = model.val()

# 可视化预测结果
source_image = '../path/to/dataset/test/sample.jpg'  # 替换为你要测试的图片路径
results = model.predict(source=source_image, conf=0.25, iou=0.45, save=True, save_txt=True)

# 显示预测结果
Image(filename='runs/detect/predict/sample.jpg')

。你有一个包含煤矿采掘工作面工人安全帽检测、工人行为检测(行走、站立、坐、操作、弯腰、靠、摔、爬)、液压支撑防护检测(多角度检测,支撑异常,剪煤机等)、采煤人检测、运煤线检测和煤块检测的智慧矿井智能分析数据集。数据集共22GB,包含13万张真实拍摄影像,并且标注格式为YOLO和COCO两种格式。

我们将使用YOLOv8进行训练、评估和可视化预测结果。以下是详细的步骤和代码示例。
![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/ea16ca8cfc97412e8c09909e0f57ca18.png)

### 项目介绍

#### 数据准备
- **数据集**: 包含13万张图片及其对应的YOLO或COCO格式标注文件。
- **标注格式**: YOLO格式或COCO格式。
- **类别**:
  - `safety_hat`: 安全帽
  - `walking`: 行走
  - `standing`: 站立
  - `sitting`: 坐
  - `operating`: 操作
  - `bending`: 弯腰
  - `leaning`: 靠
  - `falling`: 摔
  - `climbing`: 爬
  - `hydraulic_support_0_30`: 液压支撑防护板0到30度
  - `hydraulic_support_30_60`: 液压支撑防护板30到60度
  - `hydraulic_support_60_90`: 液压支撑防护板60到90度
  - `hydraulic_support_abnormal`: 支撑异常
  - `shearer`: 剪煤机
  - `coal_miner`: 采煤人
  - `conveyor_belt`: 运煤线
  - `coal_piece`: 煤块

#### 模型选择
- **YOLOv8**: 使用YOLOv8进行目标检测。YOLOv8是YOLO系列的最新版本,具有更高的性能和更好的精度。
- ![在这里插入图片描述](https://i

#### 功能
- **数据加载**: 自动从指定目录加载图像和标注文件。
- **模型训练**: 使用YOLOv8进行训练。
- **模型评估**: 在验证集上评估模型性能。
- **结果保存**: 保存训练日志和最佳模型权重。
- **可视化预测结果**: 可视化预测结果以进行验证。

### 代码实现

首先,确保你已经安装了YOLOv8库和其他必要的依赖项。你可以通过以下命令安装YOLOv8:

```bash
pip install ultralytics

接下来,我们编写代码来组织数据集并训练YOLOv8模型。假设数据集已经是标准的YOLO格式,并且按照8:1:1的比例划分好了训练集、验证集和测试集。

在这里插入图片描述

如何使用这些代码

  1. 准备数据

    • 确保你的数据集格式正确,包含训练集、验证集和测试集文件夹,以及对应的标注文件。
    • 示例数据结构如下:
      path/to/dataset/
      ├── train/
      │   ├── images/
      │   │   ├── image1.jpg
      │   │   ├── image2.jpg
      │   │   └── ...
      │   ├── labels/
      │   │   ├── image1.txt
      │   │   ├── image2.txt
      │   │   └── ...
      ├── val/
      │   ├── images/
      │   │   ├── image1.jpg
      │   │   ├── image2.jpg
      │   │   └── ...
      │   ├── labels/
      │   │   ├── image1.txt
      │   │   ├── image2.txt
      │   │   └── ...
      ├── test/
      │   ├── images/
      │   │   ├── image1.jpg
      │   │   ├── image2.jpg
      │   │   └── ...
      │   ├── labels/
      │   │   ├── image1.txt
      │   │   ├── image2.txt
      │   │   └── ...
      
  2. 替换数据路径

    • 在代码中,将 'path/to/dataset' 替换为你的数据集路径。
    dataset_dir = 'your_dataset_directory'
    
  3. 运行代码

    • 将上述代码复制到你的Python脚本中,并运行该脚本。
    • 确保你已经安装了所需的库:
      pip install ultralytics
      

示例:使用自定义数据集

假设你有一个新的数据集 my_smart_mine_dataset,其内容如下:

my_smart_mine_dataset/
├── train/
│   ├── images/
│   │   ├── image1.jpg
│   │   ├── image2.jpg
│   │   └── ...
│   ├── labels/
│   │   ├── image1.txt
│   │   ├── image2.txt
│   │   └── ...
├── val/
│   ├── images/
│   │   ├── image1.jpg
│   │   ├── image2.jpg
│   │   └── ...
│   ├── labels/
│   │   ├── image1.txt
│   │   ├── image2.txt
│   │   └── ...
├── test/
│   ├── images/
│   │   ├── image1.jpg
│   │   ├── image2.jpg
│   │   └── ...
│   ├── labels/
│   │   ├── image1.txt
│   │   ├── image2.txt
│   │   └── ...

你可以按照以下步骤进行替换:

  1. 修改数据路径

    dataset_dir = 'my_smart_mine_dataset'
    
  2. 运行完整的代码

    • 将所有代码整合到一个Python脚本中,并运行该脚本。

注释说明

代码中包含了详细的注释,帮助你理解每个部分的功能。以下是关键部分的注释:

  • 数据准备

    • data_config: 定义训练集、验证集和测试集的路径,以及类别信息。
  • 模型训练

    • model.train: 使用YOLOv8进行训练。
  • 模型评估

    • model.val: 在验证集上评估模型性能。
  • 可视化预测结果

    • model.predict: 进行推理并显示预测结果。

结果

运行代码后,你将得到以下结果:

  1. 控制台输出

    • 训练过程中每个epoch的日志信息。
    • 验证集上的评价指标(如mAP)。
  2. 文件输出

    • runs/train/smart_mine_analysis/weights/best.pt: 最佳模型权重。
    • runs/val/exp/results.txt: 验证结果。
  3. 图像输出

    • runs/detect/predict/sample.jpg: 带有预测边界的图像。

希望这些详细的信息和代码能够帮助你顺利实施和优化你的项目。如果你有任何进一步的问题或需要更多帮助,请随时提问!

运行步骤总结

  1. 安装YOLOv8

    pip install ultralytics
    
  2. 准备数据集

    • 确保数据集路径正确,并且包含训练集、验证集和测试集文件夹,以及对应的标注文件。
  3. 运行训练脚本

    python your_script_name.py
    
  4. 评估模型

    • 评估结果会在训练结束后自动输出在控制台和文件中。
  5. 可视化预测结果

    • 测试图像的结果会保存在 runs/detect/predict/ 文件夹中,可以直接查看带有预测边界的图像。

希望这些详细的指导和代码示例能帮助你成功实现和优化你的智慧矿井智能


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值