使用深度学习目标检测框架yolov8训练车站行为摔倒袭击异常行为检测数据集,构建车站行为异常检测系统,识别摔打,袭击,破坏公共物品,包括数据集准备、模型训练和结果评估
车站行为异常检测数据集,2295张,、
yolo和voc两种标注方式
4类,标注数量:
NORMAL正常: 2770
FALLDOWN摔倒: 1210
ASSAULT袭击: 794
VANDALISM破坏公共物品: 86
image num: 2295
基于车站行为异常检测数据集进行目标检测任务。数据集包含2295张图片,并且标注为YOLO和VOC两种格式。以下是详细的步骤,包括数据准备、模型训练和评估。
文章代码及内容仅供参考
环境准备
确保您已经安装了以下软件和库:
- Python 3.8 或更高版本
- PyTorch 1.9 或更高版本
- torchvision 0.10 或更高版本
- OpenCV
- numpy
- pandas
- matplotlib
- scikit-image
- albumentations(用于数据增强)
您可以使用以下命令安装所需的Python库:
pip install torch torchvision opencv-python numpy pandas matplotlib scikit-image albumentations ultralytics
数据集准备
假设您的数据集已经按照标准格式组织好,并且包含训练集、验证集和测试集。以下是数据集的预期结构:
datasets/
└── station_behavior_detection/
├── images/
│ ├── train/
│ ├── val/
│ └── test/
├── labels_yolo/
│ ├── train/
│ ├── val/
│ └── test/
├── labels_voc/
│ ├── Annotations/
│ ├── ImageSets/
│ └── Main/
└── data.yaml
类别描述文件 (data.yaml
)
根据提供的信息,整理出以下类别描述文件:
[<title="YOLOv8 Data Configuration File">]
train: ../datasets/station_behavior_detection/images/train/
val: ../datasets/station_behavior_detection/images/val/
nc: 4 # number of classes
names: ['NORMAL', 'FALLDOWN', 'ASSAULT', 'VANDALISM'] # list of class names
训练代码
我们将使用YOLOv8进行训练。首先,克隆YOLOv8仓库并设置环境。
git clone https://github.com/ultralytics/ultralytics.git
cd ultralytics
pip install -r requirements.txt
准备配置文件
我们已经在上一步中创建了 data.yaml
文件。
训练模型
使用以下命令开始训练:
yolo task=detect mode=train model=yolov8n.pt data=../datasets/station_behavior_detection/data.yaml epochs=100 imgsz=640 batch=16
结果评估
训练完成后,可以使用以下命令评估模型性能:
yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=../datasets/station_behavior_detection/data.yaml
使用说明
-
配置路径:
- 确保
datasets/station_behavior_detection/
目录结构正确。 - 确保
data.yaml
中的路径和类别名称正确。
- 确保
-
运行脚本:
- 在终端中依次运行训练脚本和评估脚本。
-
注意事项:
- 根据需要调整超参数和训练设置。
- 可以通过修改
model
参数来选择不同的YOLOv8模型架构(如yolov8s.pt
,yolov8m.pt
,yolov8l.pt
,yolov8x.pt
)。
示例
假设您的数据集文件夹结构如下:
datasets/
└── station_behavior_detection/
├── images/
│ ├── train/
│ ├── val/
│ └── test/
├── labels_yolo/
│ ├── train/
│ ├── val/
│ └── test/
├── labels_voc/
│ ├── Annotations/
│ ├── ImageSets/
│ └── Main/
└── data.yaml
并且 images/
目录包含所有的图片,labels_yolo/
目录包含对应的TXT标注文件。运行上述脚本后,您可以查看训练日志和最终的模型权重文件。
转换VOC标注到YOLO标注
如果您的数据集同时提供了VOC格式的标注,但您希望统一使用YOLO格式,可以编写一个脚本来转换标注格式。
[<title="Convert VOC to YOLO Format">]
import os
import xml.etree.ElementTree as ET
import cv2
def convert_voc_to_yolo(voc_annotations_dir, yolo_labels_dir, image_dir):
# Create the output directory if it doesn't exist
os.makedirs(yolo_labels_dir, exist_ok=True)
# Get all annotation files in the directory
annotation_files = [f for f in os.listdir(voc_annotations_dir) if f.endswith('.xml')]
for ann_file in annotation_files:
tree = ET.parse(os.path.join(voc_annotations_dir, ann_file))
root = tree.getroot()
image_filename = root.find('filename').text
image_path = os.path.join(image_dir, image_filename)
image = cv2.imread(image_path)
height, width, _ = image.shape
with open(os.path.join(yolo_labels_dir, ann_file.replace('.xml', '.txt')), 'w') as f:
for obj in root.findall('object'):
label_name = obj.find('name').text
bbox = obj.find('bndbox')
xmin = int(bbox.find('xmin').text)
ymin = int(bbox.find('ymin').text)
xmax = int(bbox.find('xmax').text)
ymax = int(bbox.find('ymax').text)
# Convert bounding box coordinates from Pascal VOC format to YOLO format
x_center = (xmin + xmax) / 2.0 / width
y_center = (ymin + ymax) / 2.0 / height
bbox_width = (xmax - xmin) / width
bbox_height = (ymax - ymin) / height
# Map label name to class ID
class_id_map = {
'NORMAL': 0,
'FALLDOWN': 1,
'ASSAULT': 2,
'VANDALISM': 3
}
class_id = class_id_map[label_name]
f.write(f"{class_id} {x_center} {y_center} {bbox_width} {bbox_height}\n")
# Example usage
voc_annotations_dir = '../datasets/station_behavior_detection/labels_voc/Annotations'
yolo_labels_dir = '../datasets/station_behavior_detection/labels_yolo'
image_dir = '../datasets/station_behavior_detection/images'
convert_voc_to_yolo(voc_annotations_dir, yolo_labels_dir, image_dir)
总结
可以构建一个全面的车站行为异常检测系统,包括数据集准备、模型训练和结果评估。以下是所有相关的代码文件:
- YOLOv8数据集配置文件 (
data.yaml
) - 训练命令
- VOC到YOLO格式转换脚本
希望这些信息对你有所帮助!如果您有任何问题或需要进一步的帮助,请告诉我。
完整代码总结
以下是完整的配置文件和训练命令:
YOLOv8数据集配置文件 (data.yaml
)
[<title="YOLOv8 Data Configuration File">]
train: ../datasets/station_behavior_detection/images/train/
val: ../datasets/station_behavior_detection/images/val/
nc: 4 # number of classes
names: ['NORMAL', 'FALLDOWN', 'ASSAULT', 'VANDALISM'] # list of class names
训练命令
yolo task=detect mode=train model=yolov8n.pt data=../datasets/station_behavior_detection/data.yaml epochs=100 imgsz=640 batch=16
评估命令
yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=../datasets/station_behavior_detection/data.yaml
VOC到YOLO格式转换脚本
[<title="Convert VOC to YOLO Format">]
import os
import xml.etree.ElementTree as ET
import cv2
def convert_voc_to_yolo(voc_annotations_dir, yolo_labels_dir, image_dir):
# Create the output directory if it doesn't exist
os.makedirs(yolo_labels_dir, exist_ok=True)
# Get all annotation files in the directory
annotation_files = [f for f in os.listdir(voc_annotations_dir) if f.endswith('.xml')]
for ann_file in annotation_files:
tree = ET.parse(os.path.join(voc_annotations_dir, ann_file))
root = tree.getroot()
image_filename = root.find('filename').text
image_path = os.path.join(image_dir, image_filename)
image = cv2.imread(image_path)
height, width, _ = image.shape
with open(os.path.join(yolo_labels_dir, ann_file.replace('.xml', '.txt')), 'w') as f:
for obj in root.findall('object'):
label_name = obj.find('name').text
bbox = obj.find('bndbox')
xmin = int(bbox.find('xmin').text)
ymin = int(bbox.find('ymin').text)
xmax = int(bbox.find('xmax').text)
ymax = int(bbox.find('ymax').text)
# Convert bounding box coordinates from Pascal VOC format to YOLO format
x_center = (xmin + xmax) / 2.0 / width
y_center = (ymin + ymax) / 2.0 / height
bbox_width = (xmax - xmin) / width
bbox_height = (ymax - ymin) / height
# Map label name to class ID
class_id_map = {
'NORMAL': 0,
'FALLDOWN': 1,
'ASSAULT': 2,
'VANDALISM': 3
}
class_id = class_id_map[label_name]
f.write(f"{class_id} {x_center} {y_center} {bbox_width} {bbox_height}\n")
# Example usage
voc_annotations_dir = '../datasets/station_behavior_detection/labels_voc/Annotations'
yolo_labels_dir = '../datasets/station_behavior_detection/labels_yolo'
image_dir = '../datasets/station_behavior_detection/images'
convert_voc_to_yolo(voc_annotations_dir, yolo_labels_dir, image_dir)
hope这些信息能帮助您顺利进行模型训练和评估。