深度学习目标检测如何训练自己的数据集——输电线路缺陷数据集,并做出 yolov8输电线路缺陷识别系统 对绝缘子缺陷中的脱落破裂闪络,阻尼器进行识别
@[toc]
假如你有这样的一套_输电线路缺陷数据集
数据集共有6714张图片数据,已分好训练集和测试集,输电线路缺陷检测;
yolo格式、voc格式,
标签类别及标签个数train/test:
根据提供的信息,以下是将标签类别及标签个数(训练集/测试集)翻译成中文并转换为表格形式的结果:
类别ID | 类别名称 | 训练集数量 | 测试集数量 |
---|---|---|---|
0 | 绝缘子 | 13967 | 1865 |
1 | 绝缘子串脱落 | 934 | 98 |
2 | 绝缘子破裂 | 1481 | 360 |
3 | 绝缘子闪络 | 2192 | 337 |
4 | 阻尼器 | 3380 | 476 |
5 | 阻尼器缺陷 | 903 | 133 |
6 | 巢穴 鸟巢 | 478 | 63 |
这个表格清晰地展示了每个类别的ID、名称以及在训练集和测试集中对应的样本数量。这对于理解数据分布、进行数据分析以及后续的模型训练非常有帮助。
该如何训练,并做成一套识别系统?
创建一个输电线路缺陷识别系统涉及到多个步骤,包括环境部署、数据预处理、模型训练、结果分析和评估等。
我们将使用YOLOv5作为示例模型进行说明。以下是详细的步骤和代码示例,帮助你从环境配置到训练完成。
1. 环境配置
首先,确保安装了必要的依赖库。假设你已经安装了Python 3.8,并且准备使用PyTorch 1.8.0。
安装依赖
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio===0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install yolov5 opencv-python-headless matplotlib numpy
请注意,根据你的系统配置选择合适的PyTorch版本。
2. 数据准备
确保数据按照以下结构组织:
dataset/
├── images/
│ ├── train/
│ └── val/
└── labels/
├── train/
└── val/
同时,创建一个data.yaml
文件来定义数据集路径、类别数量及名称:
train: ./dataset/images/train
val: ./dataset/images/val
nc: 7
names: ['insulator', 'insulator_stringtrip', 'insulator_breakage', 'insulator_flashover', 'damper', 'damper_defect', 'nest']
3. 模型训练
接下来,我们将使用YOLOv5进行模型训练。首先克隆YOLOv5仓库并安装其依赖:
git clone https://github.com/ultralytics/yolov5 # 克隆YOLOv5仓库
cd yolov5
pip install -r requirements.txt # 安装依赖
然后,使用下面的命令开始训练:
import os
from pathlib import Path
# 设置YOLOv5根目录
yolov5_repo_path = Path('path/to/yolov5') # 替换为实际路径
# 切换到YOLOv5目录
os.chdir(yolov5_repo_path)
# 开始训练
# 注意:请替换`path/to/data.yaml`为你的`data.yaml`文件的实际路径
!python train.py --img 640 --batch 16 --epochs 50 --data path/to/data.yaml --weights yolov5s.pt
在这个命令中:
--img 640
设置输入图像尺寸为640x640。--batch 16
设置批次大小为16(根据GPU内存调整)。--epochs 50
设置训练周期数为50。--data path/to/data.yaml
指定数据集配置文件的路径。--weights yolov5s.pt
使用YOLOv5的小型预训练权重启动训练。
4. 结果分析与评估
训练完成后,YOLOv5会生成一系列输出文件,包括最佳权重文件best.pt
。可以使用这些权重对验证集进行评估:
# 加载最佳权重并进行检测
weights = 'runs/train/exp/weights/best.pt'
source = './dataset/images/val' # 验证集路径
# 执行检测
!python detect.py --weights {weights} --img 640 --conf 0.25 --source {source}
这将生成带有边界框预测结果的图像,保存在runs/detect/exp
目录下。
环境部署
首先,确保你的环境中已安装必要的库:
pip install torch==1.8.0 torchvision==0.9.0 torchaudio===0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install opencv-python-headless matplotlib numpy
对于YOLO模型的实现,你可以使用官方的ultralytics/yolov5
仓库(假设YOLOv8尚未正式发布或你打算基于YOLOv5进行开发),通过以下命令安装:
pip install yolov5
数据准备
根据提供的信息,数据集已经分为训练集和测试集,并且标注了Yolo格式和VOC格式。我们将主要使用Yolo格式的数据进行训练。
确保你的文件结构如下:
dataset/
├── images/
│ ├── train/
│ └── val/
└── labels/
├── train/
└── val/
数据预处理
在YOLO框架中,数据预处理主要是配置文件的编写。创建一个名为data.yaml
的文件,内容如下:
train: ./dataset/images/train # 训练集图片路径
val: ./dataset/images/val # 验证集图片路径
nc: 7 # 类别数量
names: ['insulator', 'insulator_stringtrip', 'insulator_breakage', 'insulator_flashover', 'damper', 'damper_defect', 'nest'] # 类别名称
模型训练
使用YOLOv5进行训练。以下是简化版的训练脚本:
import torch
from pathlib import Path
# 设置YOLOv5根目录
yolov5_repo_path = Path('path/to/yolov5')
# 将当前工作目录设置为YOLOv5目录
%cd {yolov5_repo_path}
# 下载预训练模型(可选)
# !python models/yolov5s.yaml --weights yolov5s.pt
# 开始训练
!python train.py --img 640 --batch 16 --epochs 50 --data path/to/data.yaml --weights yolov5s.pt
请注意,你需要替换path/to/yolov5
和path/to/data.yaml
为你实际的路径。
结果分析与评估
训练完成后,YOLOv5会自动生成一系列输出文件,包括最佳权重文件best.pt
。我们可以使用这些权重来进行验证和结果分析:
from yolov5 import detect # 假设这是YOLOv5的一个模块
# 加载最佳权重
weights = 'runs/train/exp/weights/best.pt'
source = 'path/to/dataset/images/val' # 验证集路径
# 执行检测
detect.run(weights=weights, source=source, imgsz=640, conf_thres=0.25, iou_thres=0.45)
生成带有边界框的图像,帮助你直观地了解模型的性能。