深度学习目标检测如何训练自己的数据集——输电线路缺陷数据集,并做出 yolov8输电线路缺陷识别系统 对绝缘子缺陷中的脱落破裂闪络,阻尼器进行识别

深度学习目标检测如何训练自己的数据集——输电线路缺陷数据集,并做出 yolov8输电线路缺陷识别系统 对绝缘子缺陷中的脱落破裂闪络,阻尼器进行识别
@[toc]在这里插入图片描述

假如你有这样的一套_输电线路缺陷数据集
数据集共有6714张图片数据,已分好训练集和测试集,输电线路缺陷检测;在这里插入图片描述

yolo格式、voc格式,
标签类别及标签个数train/test:
根据提供的信息,以下是将标签类别及标签个数(训练集/测试集)翻译成中文并转换为表格形式的结果:在这里插入图片描述

类别ID类别名称训练集数量测试集数量
0绝缘子139671865
1绝缘子串脱落93498
2绝缘子破裂1481360
3绝缘子闪络2192337
4阻尼器3380476
5阻尼器缺陷903133
6巢穴 鸟巢47863

这个表格清晰地展示了每个类别的ID、名称以及在训练集和测试集中对应的样本数量。这对于理解数据分布、进行数据分析以及后续的模型训练非常有帮助。

该如何训练,并做成一套识别系统?在这里插入图片描述

创建一个输电线路缺陷识别系统涉及到多个步骤,包括环境部署、数据预处理、模型训练、结果分析和评估等。

我们将使用YOLOv5作为示例模型进行说明。以下是详细的步骤和代码示例,帮助你从环境配置到训练完成。

1. 环境配置

首先,确保安装了必要的依赖库。假设你已经安装了Python 3.8,并且准备使用PyTorch 1.8.0。

安装依赖
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio===0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install yolov5 opencv-python-headless matplotlib numpy

请注意,根据你的系统配置选择合适的PyTorch版本。

2. 数据准备

确保数据按照以下结构组织:

dataset/
├── images/
│   ├── train/
│   └── val/
└── labels/
    ├── train/
    └── val/

同时,创建一个data.yaml文件来定义数据集路径、类别数量及名称:

train: ./dataset/images/train
val: ./dataset/images/val

nc: 7
names: ['insulator', 'insulator_stringtrip', 'insulator_breakage', 'insulator_flashover', 'damper', 'damper_defect', 'nest']

3. 模型训练

接下来,我们将使用YOLOv5进行模型训练。首先克隆YOLOv5仓库并安装其依赖:

git clone https://github.com/ultralytics/yolov5  # 克隆YOLOv5仓库
cd yolov5
pip install -r requirements.txt  # 安装依赖

然后,使用下面的命令开始训练:

import os
from pathlib import Path

# 设置YOLOv5根目录
yolov5_repo_path = Path('path/to/yolov5')  # 替换为实际路径

# 切换到YOLOv5目录
os.chdir(yolov5_repo_path)

# 开始训练
# 注意:请替换`path/to/data.yaml`为你的`data.yaml`文件的实际路径
!python train.py --img 640 --batch 16 --epochs 50 --data path/to/data.yaml --weights yolov5s.pt

在这个命令中:

  • --img 640 设置输入图像尺寸为640x640。
  • --batch 16 设置批次大小为16(根据GPU内存调整)。
  • --epochs 50 设置训练周期数为50。
  • --data path/to/data.yaml 指定数据集配置文件的路径。
  • --weights yolov5s.pt 使用YOLOv5的小型预训练权重启动训练。

4. 结果分析与评估

训练完成后,YOLOv5会生成一系列输出文件,包括最佳权重文件best.pt。可以使用这些权重对验证集进行评估:

# 加载最佳权重并进行检测
weights = 'runs/train/exp/weights/best.pt'
source = './dataset/images/val'  # 验证集路径

# 执行检测
!python detect.py --weights {weights} --img 640 --conf 0.25 --source {source}

这将生成带有边界框预测结果的图像,保存在runs/detect/exp目录下。

环境部署

首先,确保你的环境中已安装必要的库:

pip install torch==1.8.0 torchvision==0.9.0 torchaudio===0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install opencv-python-headless matplotlib numpy

对于YOLO模型的实现,你可以使用官方的ultralytics/yolov5仓库(假设YOLOv8尚未正式发布或你打算基于YOLOv5进行开发),通过以下命令安装:

pip install yolov5

数据准备

根据提供的信息,数据集已经分为训练集和测试集,并且标注了Yolo格式和VOC格式。我们将主要使用Yolo格式的数据进行训练。

确保你的文件结构如下:

dataset/
├── images/
│   ├── train/
│   └── val/
└── labels/
    ├── train/
    └── val/

数据预处理

在YOLO框架中,数据预处理主要是配置文件的编写。创建一个名为data.yaml的文件,内容如下:

train: ./dataset/images/train  # 训练集图片路径
val: ./dataset/images/val      # 验证集图片路径

nc: 7                          # 类别数量
names: ['insulator', 'insulator_stringtrip', 'insulator_breakage', 'insulator_flashover', 'damper', 'damper_defect', 'nest']  # 类别名称

模型训练

使用YOLOv5进行训练。以下是简化版的训练脚本:

import torch
from pathlib import Path

# 设置YOLOv5根目录
yolov5_repo_path = Path('path/to/yolov5')

# 将当前工作目录设置为YOLOv5目录
%cd {yolov5_repo_path}

# 下载预训练模型(可选)
# !python models/yolov5s.yaml --weights yolov5s.pt

# 开始训练
!python train.py --img 640 --batch 16 --epochs 50 --data path/to/data.yaml --weights yolov5s.pt

请注意,你需要替换path/to/yolov5path/to/data.yaml为你实际的路径。

结果分析与评估

训练完成后,YOLOv5会自动生成一系列输出文件,包括最佳权重文件best.pt。我们可以使用这些权重来进行验证和结果分析:

from yolov5 import detect  # 假设这是YOLOv5的一个模块

# 加载最佳权重
weights = 'runs/train/exp/weights/best.pt'
source = 'path/to/dataset/images/val'  # 验证集路径

# 执行检测
detect.run(weights=weights, source=source, imgsz=640, conf_thres=0.25, iou_thres=0.45)

生成带有边界框的图像,帮助你直观地了解模型的性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值