基于YOLOv8的番茄成熟度检测

**番茄分割与YOLOv8 **
本仓库为我的毕业设计成果,主要内容是基于YOLOv8的番茄成熟度检测,并与Mask R-CNN模型进行对比。

Tomato-Segmentation-with-YOLOv8


在这里插入图片描述

数据集描述

Laboro番茄数据集 是一个专为目标检测与实例分割设计的综合数据集,包含温室中生长阶段的番茄图像,并按成熟度与番茄类型分类。

在这里插入图片描述

图1. 番茄数据集标注示例

关键特征
  • 成熟阶段:番茄分为三类——成熟(ripe)、半熟(half-ripe)、未熟(green)。
  • 番茄类型:包含樱桃番茄(cherry)和普通番茄(regular)两种。
  • 标注信息:为支持分割任务,数据集提供边界框标注、番茄掩膜的顶点坐标及类别标签。
图像多样性

数据集中的图像由两种不同相机拍摄,因此存在画质与分辨率的差异。

分类标准
  • 番茄类型:樱桃番茄的尺寸显著小于普通番茄。
  • 成熟度判定:基于红色区域的百分比。
    • 成熟(≥90%红色)
    • 半熟(30%-89%红色)
    • 未熟(0%-30%红色)
  • 专家验证:最终分类由专家结合其他标准综合判定。
应用场景

该数据集可用于以下场景:

  • 基于成熟度的番茄收成预测
  • 自动化采收成熟番茄系统
  • 针对特定成熟阶段的定向农药喷洒

在这里插入图片描述

环境配置

为避免库冲突,建议为YOLOv8和Mask R-CNN分别配置独立环境。环境配置完成后,可运行Jupyter Notebook或Python代码(需注意代码中的路径需与本地匹配)。

YOLOv8虚拟环境
# 创建或激活YOLOv8虚拟环境
conda create -n yolov8_env python=3.8
conda activate yolov8_env

# 安装ultralytics
pip install ultralytics

# 安装Ray(超参数调优)
pip install ray[tune]

在这里插入图片描述

Mask R-CNN虚拟环境
# 创建或激活Mask R-CNN虚拟环境
conda create -n maskrcnn_env python=3.7
conda activate maskrcnn_env

# 安装jedi(如未安装)
pip install jedi>=0.10

# 安装openmim
pip install openmim

# 安装mmcv-full
mim install mmcv-full

# 安装light-the-torch
pip install light-the-torch
ltt install torch torchvision

# 克隆mmdetection库
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection

```cpp
# 安装mmdetection
pip install -e .

代码运行

  • Mask R-CNN与YOLOv8的Jupyter Notebook专为Google Colab设计,运行前需调整项目及数据集的路径。Notebook中包含无需超参数调优的基础训练代码。

  • 在这里插入图片描述

  • 其他Python脚本

    • 颜色算法:包含颜色分析与均方误差脚本,用于复现基准论文中的颜色分析技术。
    • 掩膜提取与图像:存放提取的掩膜及预测结果图像(需注意真实标注图像需为COCO格式)。
  • YOLOv8代码文件夹:包含超参数调优脚本,可生成所有高效超参数组合及训练结果。本工作的最佳模型结果已附在YOLOv8_model_tuned_results中。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值