Python 人数识别 GUI 程序技术说明
项目概述
这是一个基于YOLOv8模型的人数识别应用程序,具有图形用户界面(GUI),支持图片和视频中的人数识别,并具备数据库存储功能。项目采用模块化设计,具有很高的功能扩展性。
技术栈
- 编程语言: Python 3.9
- GUI框架: Flet (跨平台GUI框架)
- 数据库:
- 驱动: pymysql
- ORM框架: SQLAlchemy
- 图像处理:
- OpenCV (opencv-python)
- Pillow (PIL)
- Ultralytics (YOLOv8实现)
核心功能
- 人数识别: 使用YOLOv8模型检测图片或视频中的人数
- 多媒体支持: 支持图片(JPG, PNG等)和视频(MP4, AVI等)格式
- 数据持久化: 将识别结果存储到数据库
- 用户界面: 提供直观的GUI操作界面
系统架构
┌───────────────────────┐
│ GUI Layer │ ← Flet框架构建的用户界面
└──────────┬────────────┘
↓
┌───────────────────────┐
│ Business Logic │ ← 人数识别核心逻辑
└──────────┬────────────┘
↓
┌───────────────────────┐
│ Data Access Layer │ ← SQLAlchemy ORM操作数据库
└──────────┬────────────┘
↓
┌───────────────────────┐
│ Database │ ← MySQL数据库存储识别记录
└───────────────────────┘
安装与配置
1. 安装依赖
pip install -r requirements.txt -i https://mirrors.cloud.tencent.com/pypi/simple
2. 配置文件
修改config.py
文件中的配置项,主要包括:
- 数据库连接配置(主机、端口、用户名、密码、数据库名)
- 模型路径(如果使用自定义训练的YOLOv8模型)
- 其他应用参数(如默认媒体路径等)
3. 运行程序
python main.py
功能扩展建议
- 实时摄像头支持: 添加摄像头实时人数统计功能
- 区域人数统计: 指定区域内的人数统计
- 数据可视化: 添加识别结果的图表展示
- 多模型支持: 扩展支持其他YOLO版本或其他检测模型
- 导出功能: 支持将识别结果导出为Excel或CSV
性能优化方向
- 模型量化: 对YOLOv8模型进行量化以提升推理速度
- 多线程处理: 对视频处理采用多线程提高处理效率
- GPU加速: 充分利用CUDA加速模型推理
- 缓存机制: 对已处理的媒体文件添加缓存
该项目结合了计算机视觉、数据库操作和GUI开发,是一个典型的Python全栈应用示例,适合进一步扩展为更复杂的人员统计与分析系统。