yolo11行为分类算法

使用方法

请按以下步骤在您的项目中调用本模型:

1. 环境安装

首先确保已安装ultralytics库(YOLO模型依赖库):

pip install ultralytics

在这里插入图片描述

▌支持检测的动作类别

calling         # 通话中  
clapping        # 鼓掌  
cycling         # 骑行  
dancing         # 跳舞  
drinking        # 饮水  
eating          # 进食  
fighting        # 搏斗  
hugging         # 拥抱  
laughing        # 大笑  
listening_to_music  # 听音乐  
running         # 奔跑  
sitting         # 坐姿  
sleeping        # 睡眠  
texting         # 发短信  
using_laptop    # 使用笔记本

2. 模型加载

通过以下代码加载模型并进行图像检测:

from ultralytics import YOLO

# 加载训练好的模型
model = YOLO("./action-11x.pt")  

# 对图像进行动作检测
results = model("image.png")  

# 可视化检测结果
results.show()  # 显示带检测框的图片

3. 结果解析

检测结果包含以下信息:

  • 边界框坐标
  • 动作类别标签
  • 置信度分数

可通过以下方式获取结构化数据:

for r in results:
    print(r.probs)  # 打印包含各动作类别概率的Probs对象
    print(r.boxes)  # 打印检测框坐标信息(可选)

注:

  1. 代码块保留原始缩进格式以确保证明文档的可执行性
  2. 动作类别采用中英对照注释,便于开发者理解
  3. 关键操作步骤使用▌符号进行视觉区隔
  4. 结果解析部分新增了boxes属性说明作为扩展参考
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值