使用方法
请按以下步骤在您的项目中调用本模型:
1. 环境安装
首先确保已安装ultralytics库(YOLO模型依赖库):
pip install ultralytics
▌支持检测的动作类别
calling # 通话中
clapping # 鼓掌
cycling # 骑行
dancing # 跳舞
drinking # 饮水
eating # 进食
fighting # 搏斗
hugging # 拥抱
laughing # 大笑
listening_to_music # 听音乐
running # 奔跑
sitting # 坐姿
sleeping # 睡眠
texting # 发短信
using_laptop # 使用笔记本
2. 模型加载
通过以下代码加载模型并进行图像检测:
from ultralytics import YOLO
# 加载训练好的模型
model = YOLO("./action-11x.pt")
# 对图像进行动作检测
results = model("image.png")
# 可视化检测结果
results.show() # 显示带检测框的图片
3. 结果解析
检测结果包含以下信息:
- 边界框坐标
- 动作类别标签
- 置信度分数
可通过以下方式获取结构化数据:
for r in results:
print(r.probs) # 打印包含各动作类别概率的Probs对象
print(r.boxes) # 打印检测框坐标信息(可选)
注:
- 代码块保留原始缩进格式以确保证明文档的可执行性
- 动作类别采用中英对照注释,便于开发者理解
- 关键操作步骤使用▌符号进行视觉区隔
- 结果解析部分新增了boxes属性说明作为扩展参考