林木病虫害智能检测系统技术文档
一、系统概述
本系统是基于Ultralytics YOLOv11 ForestPestDetection深度学习框架开发的先进林木病虫害智能检测解决方案,专门用于识别和分析各类林木病虫害情况。系统采用最先进的目标检测算法,能够准确识别多种常见林木病害和虫害特征,为林业保护提供智能化技术支持。
二、系统架构
1. 项目目录结构
本项目采用模块化设计,主要包含以下核心目录和文件:
Docker/ # 容器化部署相关文件
│ └── Dockerfile # Docker镜像构建配置文件
trained_models/ # 模型权重存储目录
│ └── best.pt # 训练完成的最优模型权重文件
data/ # 数据集目录
│ ├── images/ # 训练和测试图像数据
│ └── labels/ # 对应的标注文件
README.md # 项目完整说明文档
2. 技术栈组成
- 核心框架:Ultralytics YOLOv11
- 编程语言:Python 3.8+
- 深度学习框架:PyTorch 1.12+
- GPU加速:CUDA 11.6 & cuDNN 8.4
- 可视化工具:TensorBoard 2.10
三、环境配置指南
方案一:Docker容器化部署(推荐)
1. Docker镜像构建
执行以下命令构建定制化Docker镜像:
docker build -t xiaoyu/ultralytics -f Docker/Dockerfile .
2. Docker容器启动
使用以下命令启动配置好的容器环境:
docker run \
--name yolov11 \
--volume=/yolo:/ultralytics/ \
--network=bridge \
-p 2022:22 \
-p 6066:6006 \
--restart=no \
--runtime=runc \
-t -d xiaoyu/ultralytics
端口映射说明:
2022:22
:SSH服务端口,用于远程连接6066:6006
:TensorBoard可视化端口
目录挂载说明:
--volume=/yolo:/ultralytics/
:实现主机与容器间的数据共享
方案二:手动环境搭建
- 安装Anaconda3最新版本
- 创建Python虚拟环境:
conda create -n yolo_env python=3.8
- 安装PyTorch(需匹配CUDA版本):
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116
- 安装其他依赖库:
pip install ultralytics opencv-python tensorboard
四、系统使用流程
1. 开发环境连接(PyCharm专业版)
- 配置SSH远程解释器
- 连接Docker容器(端口2022)
- 同步项目代码至容器环境
2. GPU可用性测试
运行gpu_test.py
脚本验证CUDA环境:
python gpu_test.py
预期输出应显示:
- GPU设备信息
- CUDA可用状态
- 显存容量等关键参数
3. 数据准备规范
- 将待检测图像放置于
input_images
目录 - 支持格式:JPG/PNG(建议分辨率≥640×640)
- 文件命名建议:避免中文和特殊字符
4. 执行病虫害检测
运行主预测脚本:
python predict.py
输出结果:
- 检测结果图像保存至
output_images
目录 - 每张图像生成对应的JSON标注文件
- 终端输出检测统计信息(病害类型、置信度、位置坐标)
五、高级功能说明
-
模型训练接口:
from ultralytics import YOLO model = YOLO('yolov11n.pt') results = model.train(data='data.yaml', epochs=100, imgsz=640)
-
TensorBoard可视化:
- 访问
http://localhost:6066
- 查看训练曲线、PR曲线等指标
- 访问
-
自定义模型加载:
model = YOLO('trained_models/custom.pt')
六、注意事项
-
硬件要求:
- 最低配置:NVIDIA GTX 1660(6GB显存)
- 推荐配置:RTX 3060及以上(12GB显存)
-
文件权限:
- 确保挂载目录有读写权限
- Docker容器内用户UID建议设为1000
-
性能优化建议:
- 批量处理图像可提高推理效率
- 对于大尺寸图像,适当调整
imgsz
参数
本系统将持续更新维护,最新版本及技术文档请访问项目GitHub仓库获取。