YOLOv8无人机视角绵羊检测与计数系统(数据集+模型+界面)

YOLOv8 空中绵羊检测与计数系统(Gazebo仿真)

项目简介

本仓库包含基于YOLOv8算法训练的绵羊检测与计数模型,数据集来自R,并集成Gazebo仿真环境实现无人机空中巡检模拟-YOLOv8-Sheep-Detection-Counting

训练结果
  • 模型:YOLOv8n
  • 权重路径:resources/weights/
  • 训练效果图示:
    YOLOv8-Sheep-Detection-Counting
    在这里插入图片描述
安装步骤
  1. 创建虚拟环境

    # 创建环境
    python -m venv yolov8-sheep
    # 激活环境(Linux/macOS)
    source yolov8-sheep/bin/activate
    
  2. 安装依赖

    pip install -e '.[dev]'
    

在这里插入图片描述

运行检测
  • 图片检测
    python count.py
    
  • 视频检测
    python track.py
    

    修改脚本中file_path参数指向你的文件,示例数据在resources/images/resources/videos/中。

Gazebo仿真步骤
  1. 环境配置

    • 此教程配置测试环境,或直接使用提供的模型与世界文件(resources/models/resources/worlds/)。
      在这里插入图片描述
  2. 启动仿真

    • 终端1:加载Gazebo世界
      roslaunch gazebo_ros agriculture.launch
      
    • 终端2:启动无人机(ArduCopter)
      cd ~/ardupilot/Tools/autotest && ./sim_vehicle.py -v ArduCopter -f gazebo-iris -I0
      
      • 在控制台看到APM: EKF2 IMU0 is using GPS后,输入以下指令起飞:
        mode guided
        arm throttle
        takeoff 40
        
    • 终端3:运行检测程序
      python sheep.py
      
效果演示

参考仓库中的演示文件。
在这里插入图片描述


关键术语说明

  • Gazebo:机器人仿真工具,用于模拟无人机飞行与传感器数据。
  • ArduCopter:开源无人机飞控系统,支持Gazebo硬件在环仿真。
  • YOLOv8n:YOLOv8的轻量级版本,适合边缘设备部署。

如需进一步优化或扩展功能(如实时数据传输),可联系开发者!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值