基于YOLOv11姿态识别检测的智能健身助手
🌟 核心功能
- 实时动作计数 - 自动统计Good-GYM训练次数
- 多动作支持 - 深蹲、俯卧撑、仰卧起坐、二头弯举等
- 高精度姿态检测 - 采用YOLOv11技术
- 可视化反馈 - 实时骨骼追踪与角度测量
- 训练数据统计 - 记录长期健身进度
- 友好交互界面 - 简洁PyQt5图形界面
- 普通摄像头即可使用 - 无需专业设备
- 本地化运行 - 完全保障隐私
📦 直接下载
免Python环境配置的预编译版本:
- Windows exe安装包:[百度网盘链接] 提取码:xxxx
📋 系统要求
- Python 3.7+
- 摄像头
- 推荐使用GPU加速(CPU也可运行)
🚀 快速安装
# Windows
python -m venv venv
.\venv\Scripts\activate
# Linux/MacOS
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python workout_qt_modular.py
🔧 高级配置
GPU加速版安装(推荐)
- 确认系统具备:
- NVIDIA显卡(建议4GB以上显存)
- 最新版NVIDIA驱动
- 安装CUDA和cuDNN
- 安装GPU版PyTorch:
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu118
- 验证GPU可用性:
python -c "import torch; print('GPU可用:', torch.cuda.is_available())"
Windows CPU版安装
- 安装Python和Git
- 通过批处理文件生成可执行程序:
.\build_executable.bat
📝 使用指南
控制功能
- 界面按钮切换不同训练模式
- 实时显示动作标准度与计数
- "重置"按钮清零计数器
- 手动修正计数功能
- 骨骼显示开关
- 历史数据统计查看
快捷键
- S:深蹲模式
- P:俯卧撑模式
- U:仰卧起坐模式
- B:二头弯举模式
- O:过头推举模式
- R:重置计数
- Q:退出程序
🖼️ 界面截图
[截图1] [截图2] [截图3] [截图4] [截图5]
📄 开源协议
MIT许可证(详见LICENSE文件)
🔮 未来规划
- 支持更多训练动作
- 提升姿态检测精度
- 增加语音指导
- 开发移动端应用
- 多语言界面支持
(注:方括号[]内容为需替换的实际链接或图片占位符)