基于YOLOv11的人体姿态识别检测的智能健身助手

基于YOLOv11姿态识别检测的智能健身助手

在这里插入图片描述

🌟 核心功能

  • 实时动作计数 - 自动统计Good-GYM训练次数
  • 多动作支持 - 深蹲、俯卧撑、仰卧起坐、二头弯举等
  • 高精度姿态检测 - 采用YOLOv11技术
  • 可视化反馈 - 实时骨骼追踪与角度测量
  • 训练数据统计 - 记录长期健身进度
  • 友好交互界面 - 简洁PyQt5图形界面
  • 普通摄像头即可使用 - 无需专业设备
  • 本地化运行 - 完全保障隐私

📦 直接下载
免Python环境配置的预编译版本:

  • Windows exe安装包:[百度网盘链接] 提取码:xxxx

📋 系统要求

  • Python 3.7+
  • 摄像头
  • 推荐使用GPU加速(CPU也可运行)

🚀 快速安装



# Windows  
python -m venv venv  
.\venv\Scripts\activate  

# Linux/MacOS  
python -m venv venv  
source venv/bin/activate  

pip install -r requirements.txt  
python workout_qt_modular.py  

🔧 高级配置
GPU加速版安装(推荐)

  1. 确认系统具备:
    • NVIDIA显卡(建议4GB以上显存)
    • 最新版NVIDIA驱动
  2. 安装CUDA和cuDNN
  3. 安装GPU版PyTorch:
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu118  
  1. 验证GPU可用性:
python -c "import torch; print('GPU可用:', torch.cuda.is_available())"  

Windows CPU版安装

  1. 安装Python和Git
  2. 通过批处理文件生成可执行程序:
.\build_executable.bat  

在这里插入图片描述

📝 使用指南
控制功能

  • 界面按钮切换不同训练模式
  • 实时显示动作标准度与计数
  • "重置"按钮清零计数器
  • 手动修正计数功能
  • 骨骼显示开关
  • 历史数据统计查看
    在这里插入图片描述

快捷键

  • S:深蹲模式
  • P:俯卧撑模式
  • U:仰卧起坐模式
  • B:二头弯举模式
  • O:过头推举模式
  • R:重置计数
  • Q:退出程序
    在这里插入图片描述

🖼️ 界面截图
[截图1] [截图2] [截图3] [截图4] [截图5]
在这里插入图片描述

在这里插入图片描述

📄 开源协议
MIT许可证(详见LICENSE文件)

🔮 未来规划

  • 支持更多训练动作
  • 提升姿态检测精度
  • 增加语音指导
  • 开发移动端应用
  • 多语言界面支持

(注:方括号[]内容为需替换的实际链接或图片占位符)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值