基于深度学习无人机视角的行人车辆等监控目标检测

基于无人机的监控目标检测

项目描述

本项目旨在利用多种计算机视觉模型,精准检测无人机拍摄图像中的车辆。我们采用2019数据集进行实验,该数据集包含由无人机在不同地点、环境和天气条件下拍摄的带标注图像与视频。我们评估了包括Faster RCNN、Mask RCNN、SSD、YOLOv3、YOLOv5和YOLOv8在内的多个主流模型的性能,并对比了它们的检测效果。研究结果揭示了不同模型在无人机图像车辆检测任务中的优劣特性。
在这里插入图片描述


快速入门

要使用本仓库中的代码,请按以下步骤操作:

  1. 在支持GPU的环境(如Google Colab、Kaggle或本地高性能GPU设备)中打开对应笔记本。
  2. 按照笔记本内的指引训练和测试模型。

在这里插入图片描述

使用方法

本仓库包含三个核心实现:

---------------点击下方图片播放---------------原始视频---------------YOLOv8演示预测视频(原始)

  • YOLO系列(v3/v5/v8):相关笔记本实现了无人机监控场景的目标检测。
    • 打开对应笔记本,按指引运行即可训练和测试模型。
      在这里插入图片描述

---------------点击下方图片播放---------------检测结果视频---------------YOLOv8演示预测视频(结果)


数据集 无人机数据集**。各笔记本中已内置数据集加载与预处理流程,您可直接在Google Colab、Kaggle或GPU设备上运行全部代码。


支持模型

在这里插入图片描述

YOLO系列

  • YOLOv3
  • YOLOv5
  • YOLOv8

其他模型

  • SSD
  • Faster RCNN
  • Mask RCNN
  • RCNN

性能对比

算法mAP@0.5推理时间(毫秒)
SSD0.1230
Faster-RCNN (Resnet50)0.23150
Faster-RCNN (Resnet50-FPN)0.27170
Mask-RCNN0.29200
RCNN with Resnet500.30190
YOLOv30.4022
YOLOv5-Small0.466.4
YOLOv5-Extra-Large0.5412.1
YOLOv8-Small0.461.20
YOLOv8-Extra-Large0.563.53

结论

通过对比模型在阈值0.5下的平均精度(mAP)和推理速度(FPS),我们得出:

  • YOLOv8-Extra-Large 以0.56的mAP达到最高精度
  • YOLOv8-Small 以1.20毫秒的推理速度成为最快模型

实际应用中需根据场景需求权衡精度与速度:高精度任务推荐YOLOv8-Extra-Large,实时性要求高则优先选择YOLOv8-Small。


欢迎关注交流!!!!!!!!!!!!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值