题意:
给定一个数列A,要求你将这个数列划分成几个连续的部分,使得每部分分别从小到大排序后整个数列有序。
问最多可以划分成几个部分。
第一行包含一个整数 n (1 ≤ n ≤ 100 000) — 表示数列的长度,之后一行 n 个整数 hi (1 ≤ hi ≤ 109). 描述这个数列。
思路:
当一个数后面没有比他小的数时,则他与他后面的部分可以断开,即他自己可以作为一个单独的区间。否则,找到后面距离他最远的比他小的数,然后得到一个区间,这个区间必须要作为一个整体分割,这样才能使得区间结尾的数在排序后能到区间开头的数的前面,然后枚举区间的每一个元素,维护区间结尾,就是每个数后面比他小距离他最远的数的位置和当前区间结尾比较。枚举完区间,这个区间就作为一段进行分割。
ac代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<string>
#include<vector>
#include<unordered_map>
#define mod (1000000007)
using namespace std;
typedef long long ll;
const int maxn=1e5+100;
struct node{
int val,id;
friend bool operator<(node a,node b){
if(a.val==b.val) return a.id<b.id;
return a.val<b.val;
}
}b[maxn];
int a[maxn],vis[maxn];
int main(){
int n,ans=0;
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]),b[i].id=i,b[i].val=a[i];
sort(b+1,b+1+n);
int id=0;
for(int i=1;i<=n;i++){
if(b[i].id>id) vis[b[i].id]=-1;
else vis[b[i].id]=id;
id=max(id,b[i].id);
}
for(int i=1;i<=n;){
int j;
if(vis[i]==-1) i++;
else{
int ed=vis[i];
for(j=i;j<=ed;j++)
ed=max(vis[j],ed);
i=ed+1;
}
ans++;
}
printf("%d\n",ans);
return 0;
}