【CodeForces - 599C 】Day at the Beach (思维)

题意:

给定一个数列A,要求你将这个数列划分成几个连续的部分,使得每部分分别从小到大排序后整个数列有序。

问最多可以划分成几个部分。

第一行包含一个整数 n (1 ≤ n ≤ 100 000) — 表示数列的长度,之后一行 n 个整数 hi (1 ≤ hi ≤ 109). 描述这个数列。

思路:

当一个数后面没有比他小的数时,则他与他后面的部分可以断开,即他自己可以作为一个单独的区间。否则,找到后面距离他最远的比他小的数,然后得到一个区间,这个区间必须要作为一个整体分割,这样才能使得区间结尾的数在排序后能到区间开头的数的前面,然后枚举区间的每一个元素,维护区间结尾,就是每个数后面比他小距离他最远的数的位置和当前区间结尾比较。枚举完区间,这个区间就作为一段进行分割。

ac代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<string>
#include<vector>
#include<unordered_map>
#define mod (1000000007)
using namespace std;
typedef long long ll;
const int maxn=1e5+100;
struct node{
	int val,id;
	friend bool operator<(node a,node b){
		if(a.val==b.val) return a.id<b.id;
		return a.val<b.val;
	} 
}b[maxn];
int a[maxn],vis[maxn];
int main(){
	int n,ans=0;
	scanf("%d",&n);
	for(int i=1;i<=n;i++) scanf("%d",&a[i]),b[i].id=i,b[i].val=a[i];
	sort(b+1,b+1+n);
	int id=0;
	for(int i=1;i<=n;i++){
		if(b[i].id>id) vis[b[i].id]=-1;
		else vis[b[i].id]=id;
		id=max(id,b[i].id);
	}
	for(int i=1;i<=n;){
		int j;
		if(vis[i]==-1) i++;
		else{
			int ed=vis[i];
			for(j=i;j<=ed;j++) 
				ed=max(vis[j],ed);
			i=ed+1;
		}
		ans++;
	}
	printf("%d\n",ans);
	return 0;
}

 

引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值