给你一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长有效(格式正确且连续)括号子串的长度。
示例 1:
输入:s = “(()”
输出:2
解释:最长有效括号子串是 “()”
示例 2:
输入:s = “)()())”
输出:4
解释:最长有效括号子串是 “()()”
示例 3:
输入:s = “”
输出:0
提示:
0 <= s.length <= 3 * 104
s[i] 为 ‘(’ 或 ‘)’
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-valid-parentheses
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路:
解法一:用栈模拟括号匹配,规定栈内只存左括号和已经合并完成的有效括号。遇到左括号直接压栈,遇到右括号看能否在站内找到匹配的左括号,不能就弹出栈内所有元素,否则就合并成有效括号,压入站内。
class Solution {
public:
int longestValidParentheses(string s) {
stack<int> sk;
int ans=0;
for(int i=0;i<s.length();i++){
if(s[i]=='('){
sk.push(-1);
}
else{
if(!sk.empty()){
int sum=2;
if(sk.top()==-1){
sk.pop();
}
else{
if(sk.size()>=2){
sum+=sk.top();
sk.pop();
sk.pop();
}
else{
sum=0;
while(!sk.empty())sk.pop();
continue;
}
}
while(!sk.empty()&&sk.top()>0){
sum+=sk.top();
sk.pop();
}
ans=max(ans,sum);
sk.push(sum);
}
}
}
return ans;
}
};
解法二:
使用dp,dp数组代表以当前为结尾最长有效括号匹配。
设当前位置为i,当前为左括号,dp[i]值为0。当前为右括号,看前一个是什么。前一个是左括号,当前dp值为dp[i-2]+2。前一个为右括号,则需要在看
i-1-dp[i-1],该位置为右括号,dp[i]=0,该位置为左括号,dp[i]=dp[i-1]+dp[i-1-dp[i-1]-1]+2。
代码参考:
https://xuanweiace.blog.csdn.net/article/details/123327866
解法三:
设想思路,首先建立两个索引数组,数组元素为其左边元素和右边元素。将所有挨着的左右括号合并成一个(以#表示),接下来将合并的元素放入队列中,然后每次弹出一个,判断左右能否合并即是否是(#)这种形式,是的话将其合并为#,放入队列,同时更新索引数组。每次形成#就维护最优解。