Superbot is an interesting game which you need to control the robot on an N*M grid map.
As you see, it's just a simple game: there is a control panel with four direction left (1st position), right (2nd), up (3rd) and down (4th). For each second, you can do exact one of the following operations:
- Move the cursor to left or right for one position. If the cursor is on the 1stposition and moves to left, it will move to 4th position; vice versa.
- Press the button. It will make the robot move in the specific direction.
- Drink a cup of hot coffee and relax. (Do nothing)
However, it's too easy to play. So there is a little trick: Every P seconds the panel will rotate its buttons right. More specifically, the 1st position moves to the 2nd position; the 2nd moves to 3rd; 3rd moves to 4th and 4th moves to 1st. The rotating starts at the beginning of the second.
Please calculate the minimum time that the robot can get the diamond on the map.
At the beginning, the buttons on the panel are "left", "right", "up", "down" respectively from left to right as the picture above, and the cursor is pointing to "left".
Input
There are multiple test cases. The first line of input contains an integer Tindicating the number of test cases. For each test case:
The first line contains three integers N, M (2 <= N, M <= 10) and P (1 <= P <= 50), which represent the height of the map, the width of the map and the period that the panel changes, respectively.
The following lines of input contains N lines with M chars for each line. In the map, "." means the empty cell, "*" means the trap which the robot cannot get in, "@" means the initial position of the robot and "$" means the diamond. There is exact one robot and one diamond on the map.
Output
For each test case, output minimum time that the robot can get the diamond. Output "YouBadbad" (without quotes) if it's impossible to get the diamond.
Sample Input
4 3 4 50 @... ***. $... 5 5 2 ..... ..@.. .*... $.*.. ..... 2 3 1 *.@ $.* 5 5 2 ***** ..@.. ***** $.... .....
Sample Output
12
4
4
YouBadbad
Hint
For the first example:
0s: start
1s: cursor move right (cursor is at "right")
2s: press button (robot move right)
3s: press button (robot move right)
4s: press button (robot move right)
5s: cursor move right (cursor is at "up")
6s: cursor move right (cursor is at "down")
7s: press button (robot move down)
8s: press button (robot move down)
9s: cursor move right (cursor is at "left")
10s: press button (robot move left)
11s: press button (robot move left)
12s: press button (robot move left)
For the second example:
0s: start
1s: press button (robot move left)
2s: press button (robot move left)
--- panel rotated ---
3s: press button (robot move down, without changing cursor)
4s: press button (robot move down)
For the third example:
0s: start
1s: press button (robot move left)
--- panel rotated ---
2s: press button (robot move down)
--- panel rotated ---
3s: cursor move left (cursor is at "right")
--- panel rotated ---
4s: press button (robot move left)
思路:
能看出来是bfs,一开始是想手动模拟nex数组交换,并且发现一个点可能走多次,所以打算设个上界,但是一直WA,后来听zyb大佬讲解后,才发现不用这么麻烦,因为nex数组总共就只有4种状况,所以可以把四种都列出了,判断在哪一个模式下就可以,记录位置的时候可以开4维,记录数组vis[i][j][m][p],指在(i,j)的坐标下,当前模式为m,并且指针指向p这个位置时,有没有走过,这个记录方法很巧妙,自己没有想到,这样就把所有的情况都可以记录下来。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<string>
#include<vector>
#define mod (1000000007)
#define pi acos(-1.0)
using namespace std;
typedef long long ll;
struct node{
int x,y;
int t;
int pos;
int mo;
node(){}
node(int xx,int yy,int tt,int p,int m):x(xx),y(yy),t(tt),pos(p),mo(m){}
friend bool operator<(node a,node b)
{
return a.t>b.t;
}
};
char mp[100][100];
int stx,sty,edx,edy;
int vis[100][100][4][4];
int nex[4][4][2]={
{{0,-1},{0,1},{-1,0},{1,0}},
{{1,0},{0,-1},{0,1},{-1,0}} ,
{{-1,0},{1,0},{0,-1},{0,1}} ,
{{0,1},{-1,0},{1,0},{0,-1}},
};
int n,m,p;
void bfs()
{
int ans=-1;
memset(vis,0,sizeof(vis));
priority_queue<node> que;
que.push(node(stx,sty,0,0,0));
while(!que.empty()){
node nn=que.top();
que.pop();
if(vis[nn.x][nn.y][nn.mo][nn.pos]==1) continue;
if(edx==nn.x&&edy==nn.y){
ans=nn.t;break;
}
vis[nn.x][nn.y][nn.mo][nn.pos]++;
int ad=0;
if((nn.t+1)%p==0)
ad=1;
que.push(node(nn.x,nn.y,nn.t+1,nn.pos,(nn.mo+ad)%4));
que.push(node(nn.x,nn.y,nn.t+1,(nn.pos+1)%4,(nn.mo+ad)%4));
que.push(node(nn.x,nn.y,nn.t+1,(nn.pos-1+4)%4,(nn.mo+ad)%4));
int tx=nn.x+nex[nn.mo][nn.pos][0];
int ty=nn.y+nex[nn.mo][nn.pos][1];
if(tx<0||tx>=n||ty<0||ty>=m||mp[tx][ty]=='*') {
;
}else
que.push(node(tx,ty,nn.t+1,nn.pos,(nn.mo+ad)%4));
}
if(ans==-1)puts("YouBadbad");
else
printf("%d\n",ans);
}
int main()
{
int t;
cin>>t;
while(t--)
{
scanf("%d%d%d",&n,&m,&p);
for(int i=0;i<n;i++){
scanf("%s",mp[i]);
for(int j=0;j<m;j++)
{
if(mp[i][j]=='@')
{
stx=i;sty=j;
}
else if(mp[i][j]=='$')
{
edx=i;edy=j;
}
}
}
bfs();
}
return 0;
}