复杂的整数划分问题 动规

总时间限制: 200ms 内存限制: 65536kB
描述
将正整数n 表示成一系列正整数之和,n=n1+n2+…+nk, 其中n1>=n2>=…>=nk>=1 ,k>=1 。
正整数n 的这种表示称为正整数n 的划分。
输入
标准的输入包含若干组测试数据。每组测试数据是一行输入数据,包括两个整数N 和 K。
(0 < N <= 50, 0 < K <= N)
输出
对于每组测试数据,输出以下三行数据:
第一行: N划分成K个正整数之和的划分数目
第二行: N划分成若干个不同正整数之和的划分数目
第三行: N划分成若干个奇正整数之和的划分数目
样例输入
5 2
样例输出
2
3
3
提示
第一行: 4+1, 3+2,
第二行: 5,4+1,3+2
第三行: 5,1+1+3, 1+1+1+1+1+1

#include <iostream>
#include <cstring>
using namespace std;
const int MAXN = 60;
int a[MAXN][MAXN];//N划分成K个正整数之和的划分数目,j=K
int b[MAXN][MAXN];//N划分成若干个不同正整数之和的划分数目,j个不同正整数
int c[MAXN][MAXN];//N划分成若干个奇正整数之和的划分数目,i=n奇正整数
int d[MAXN][MAXN];
int N,K;

void q1(){
    for(int i = 1;i<=N;i++){
        a[0][i] = 0;
    }
    for(int i = 1;i<=N;i++){
        a[i][1] = 1;
    }
    for(int i = 1;i<=N;i++){
        for(int j = 2;j<=K;j++){
            a[i][j] = a[i-j][j]+a[i-1][j-1];//划分中存在与j相等的数把i-j,然后在i-j中再划分
        }
    }
}

void q2(){
    b[1][1] = 1;
    for(int i = 0;i<=N;i++){
        b[i][0] = 0;
    }
    for(int i = 2;i<=N;i++){
        for(int j = 1;j<=N;j++){
            b[i][j] = b[i-j][j-1]+b[i-j][j];

        }

    }


}

void q3(){
    c[0][0] = 1,d[0][0] = 1;
    for(int i = 1;i<=N;i++){
        for(int j = 1;j<=i;j++){
            d[i][j] = c[i-j][j];
            c[i][j] = c[i-1][j-1]+d[i-j][j];
        }
    }


}


int main(){
    while(cin>>N>>K){
        memset(a,0,sizeof(a));
        memset(b,0,sizeof(b));
        memset(c,0,sizeof(c));
        memset(d,0,sizeof(d));
        int sum = 0;
        int t = 0;
        q1();
        q2();
        q3();
        cout<<a[N][K]<<endl;
        for(int i = 1;i<=N;i++){
            sum+=b[N][i];
        }
        cout<<sum<<endl;
        for(int i = 0;i<=N;i++){
            t += c[N][i];
        }
        cout<<t<<endl;
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值