Openjudge7219 复杂的整数划分问题(dp)

总时间限制: 
200ms 
内存限制: 
65536kB
描述

将正整数表示成一系列正整数之和,n=n1+n2+…+nk, 其中n1>=n2>=…>=nk>=1 k>=1 
正整数的这种表示称为正整数的划分。

输入
标准的输入包含若干组测试数据。每组测试数据是一行输入数据,包括两个整数N 和 K。 
(0 < N <= 50, 0 < K <= N)
输出
对于每组测试数据,输出以下三行数据:
第一行: N划分成K个正整数之和的划分数目
第二行: N划分成若干个不同正整数之和的划分数目
第三行: N划分成若干个奇正整数之和的划分数目
样例输入
5 2
样例输出
2
3
3
提示
第一行: 4+1, 3+2,
第二行: 5,4+1,3+2
第三行: 5,1+1+3, 1+1+1+1+1+1

非常全的各种整数划分总结:点击打开链接


AC代码:


#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
using namespace std;
const int maxn = 60;
int main(int argc, char const *argv[])
{
	int n, k;
	while(cin >> n >> k) {
		int num2[maxn][maxn] = {0}, num1[maxn][maxn] = {0}, f[maxn][maxn] = {0}, g[maxn][maxn] = {0};
		for(int i = 1; i <= n; ++i)
			for(int j = 1; j <= n; ++j) {
				if(i < j) {
					num1[i][j] = num1[i][i];
					num2[i][j] = 0;
				}
				else if(i == j) {
					num1[i][j] = 1 + num1[i][j - 1];
					num2[i][j] = 1;
				}
				else {
					num1[i][j] = num1[i - j][j - 1] + num1[i][j - 1];
					num2[i][j] = num2[i - 1][j - 1] + num2[i - j][j];
				}
			}
		f[0][0] = 1, g[0][0] = 1;
		for(int i = 1; i <= n; ++i)
			for(int j = 1; j <= i; ++j) {
				g[i][j] = f[i - j][j];
				f[i][j] = g[i - j][j] + f[i - 1][j - 1];
			}
		int res = 0;
		for(int i = 0; i <= n; ++i)
			res += f[n][i];
		cout << num2[n][k] << endl << num1[n][n] << endl << res << endl;
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值