-
总时间限制:
- 200ms 内存限制:
- 65536kB
-
描述
-
将正整数n 表示成一系列正整数之和,n=n1+n2+…+nk, 其中n1>=n2>=…>=nk>=1 ,k>=1 。
正整数n 的这种表示称为正整数n 的划分。
输入
-
标准的输入包含若干组测试数据。每组测试数据是一行输入数据,包括两个整数N 和 K。
(0 < N <= 50, 0 < K <= N)
输出
-
对于每组测试数据,输出以下三行数据:
第一行: N划分成K个正整数之和的划分数目
第二行: N划分成若干个不同正整数之和的划分数目
第三行: N划分成若干个奇正整数之和的划分数目
样例输入
-
5 2
样例输出
-
2 3 3
提示
-
第一行: 4+1, 3+2,
第二行: 5,4+1,3+2
第三行: 5,1+1+3, 1+1+1+1+1+1
非常全的各种整数划分总结:点击打开链接
AC代码:
#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
using namespace std;
const int maxn = 60;
int main(int argc, char const *argv[])
{
int n, k;
while(cin >> n >> k) {
int num2[maxn][maxn] = {0}, num1[maxn][maxn] = {0}, f[maxn][maxn] = {0}, g[maxn][maxn] = {0};
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j) {
if(i < j) {
num1[i][j] = num1[i][i];
num2[i][j] = 0;
}
else if(i == j) {
num1[i][j] = 1 + num1[i][j - 1];
num2[i][j] = 1;
}
else {
num1[i][j] = num1[i - j][j - 1] + num1[i][j - 1];
num2[i][j] = num2[i - 1][j - 1] + num2[i - j][j];
}
}
f[0][0] = 1, g[0][0] = 1;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= i; ++j) {
g[i][j] = f[i - j][j];
f[i][j] = g[i - j][j] + f[i - 1][j - 1];
}
int res = 0;
for(int i = 0; i <= n; ++i)
res += f[n][i];
cout << num2[n][k] << endl << num1[n][n] << endl << res << endl;
}
return 0;
}