概率+逆元 书

该博客讨论了一道数学问题,涉及概率和逆元的概念。问题描述了Hazel如何从一堆书中抽取书,每次抽取的体力消耗与书的位置成正比。博主解释了如何计算在大量抽取后每次抽书平均体力消耗的期望值,并提供了样例输入和输出。解答过程中提到了关键的推导和公式,即期望值等于每本书的概率乘以其耗费体力的期望,其中每本书对耗费体力的贡献是独立的,由其在书堆上的位置概率决定。
摘要由CSDN通过智能技术生成
  

问题 C: 书

时间限制: 1 Sec  内存限制: 512 MB

题目描述

Hazel有n本书,编号1为n到 ,叠成一堆。当她每次抽出一本书的时候,上方的书会因重力而下落,这本被取出的书则会被放置在书堆顶。

每次有pi的概率抽取编号为i的书。她每次抽书所消耗的体力与这本书在这堆中是第几本成正比。具体地,抽取堆顶的书所耗费体力值为1 ,抽取第二本耗费体力值为2 ,以此类推。

现在 想知道,在很久很久以后(可以认为几乎是无穷的),她每次抽书所耗费的体力的期望值是多少。

最终的答案显然可以表示成a/b的形式,请输出a*(b^-1)模1e9+7的值。

【输入格式】

第一行一个整数n

接下来n行,每行两个整数ai,bi,代表抽取第i本书的概率是ai/bi

保证所有书的概率和等于1

【输出格式】

输出一行一个整数,代表期望值

【输入样例1】

2

227494 333333

105839 333333

【输出样例1】

432679642

【输入样例2】

10

159073 999999

1493 142857

3422 333333

4945 37037

2227 111

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值