问题 E: 阿狸和桃子的游戏
时间限制: 1 Sec 内存限制: 128 MB
题目描述
阿狸和桃子正在玩一个游戏,游戏是在一个带权图G=(V, E)上进行的,设节点权值为w(v),边权为c(e)。游戏规则是这样的:
1. 阿狸和桃子轮流将图中的顶点染色,阿狸会将顶点染成红色,桃子会将顶点染成粉色。已经被染过色的点不能再染了,而且每一轮都必须给一个且仅一个顶点染色。
2. 为了保证公平性,节点的个数N为偶数。
3. 经过N/2轮游戏之后,两人都得到了一个顶点集合。对于顶点集合S,得分计算方式为””
。
由于阿狸石头剪子布输给了桃子,所以桃子先染色。两人都想要使自己的分数比对方多,且多得越多越好。如果两人都是采用最优策略的,求最终桃子的分数减去阿狸的分数。
输入
输入第一行包含两个正整数N和M,分别表示图G的节点数和边数,保证N一定是偶数。
接下来N+M行。
前N行,每行一个整数w,其中第k行为节点k的权值。
后M行,每行三个用空格隔开的整数a b c,表示一条连接节点a和节点b的边,权值为c。
输出
输出仅包含一个整数,为桃子的得分减去阿狸的得分。
样例输入
4 4
6
4
-1
-2
1 2 1
2 3 6
3 4 3
1 4 5
样例输出
3
数据规模和约定
对于40%的数据,1 ≤ N ≤ 16。
对于100%的数据,1 ≤ N ≤ 10000,1 ≤ M ≤ 100000,-10000 ≤ w , c ≤ 10000。
对于一条边,我不选它任意一个顶点,对答案贡献:-w[u]-w[v]-c[e]
选了一个顶点:-w[u]+w[v]
选了两个顶点:w[u]+w[v]+c[e]
首先把ans设为-sigma w[x] -sigma c[e]
现在我们设选一个点的贡献为w[x]*2+sigma c[e],这样就可以贪心了。
我们模拟先手,因为两人都会走最优策略,所以降序排列下隔一个点选一个
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 10005
using namespace std;
int read()
{
int sum=0,f=1;char x=getchar();
while(x<'0'||x>'9'){if(x=='-')f=-1;x=getchar();}
while(x>='0'&&x<='9'){sum=(sum<<3)+(sum<<1)+x-'0';x=getchar();}
return sum*f;
}
int n,m,a[N];
int main()
{
n=read();m=read();int s=0;
for(int i=1;i<=n;i++)a[i]=read(),s-=a[i],a[i]*=2;
int x,y,l;
for(int i=1;i<=m;i++)
{
x=read();y=read();l=read();
a[x]+=l;a[y]+=l;s-=l;
}
sort(a+1,a+n+1,greater<int>());
for(int i=1;i<=n;i+=2)s+=a[i];
printf("%d\n",s);
}