LeetCode——240.搜索二维矩阵

在这里插入图片描述


题解

  • 从左下(右上同理可行)开始搜索,如果大于目标,则说明当前行往下都是大于目标的,那么row-1。如果当前小于目标,则说明当前列往左都是小于目标的。

  • 这样类似于曼哈顿距离的逼近,直到找到目标或者出界。

  • 时间复杂度: O ( n + m ) O(n+m) O(n+m)
    时间复杂度分析的关键是注意到在每次迭代(我们不返回 true)时,行或列都会精确地递减/递增一次。由于行只能减少 m m m 次,而列只能增加 n n n 次,因此在导致 while 循环终止之前,循环不能运行超过 n + m n+m n+m 次。因为所有其他的工作都是常数,所以总的时间复杂度在矩阵维数之和中是线性的。

  • 空间复杂度: O ( 1 ) O(1) O(1),因为这种方法只处理几个指针,所以它的内存占用是恒定的。


AC-Code

class Solution {
public:
    bool searchMatrix(vector<vector<int>>& matrix, int target) {
        if(matrix.size() == 0)  return false;
        int m = matrix.size();
        int n = matrix[0].size();
        int row = m - 1, col = 0;
        while(row >= 0 && col < n) {
            if(matrix[row][col] > target)
                --row;
            else if(matrix[row][col] < target)
                ++col;
            else 
                return true;
        }
        return false;
    }
};
©️2020 CSDN 皮肤主题: 终极编程指南 设计师:CSDN官方博客 返回首页