本题大意是给定一个数组,将其分割为长度相等的多个子区间,要求经分割后的各个子区间内的最大值之和大于目标值target,求最小子区间长度。
分割后的子区间长度是固定的,若分割后有一些剩余,将剩余的直接舍掉。本题的解法是从1~n枚举每种子区间长度,利用ST算法(详解:ST算法)求出分割后各个小区间内的最大值之和,若大于了目标值则输出。
有一种优化策略可以所短运行时间,设目标值为target,最小子区间长度为m,数组长度为n。先找出数组内的最大值v,然后假设分割出的所有子区间内的最大值都是v,那么m最小为:(k-1)/ v + 1。代码如下:
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=200005;
int arr[maxn],dp[maxn][15];
int max(int a,int b)
{
return a>b?a:b;
}
void init(int n)
{
for(int i=1;i<=n;i++)
dp[i][0]=arr[i];
for(int j=1;(1<<j)<=n;j++)
for(int i=1;i+(1<<j)<=n+1;i++)
dp[i][j]=max(dp[i][j-1],dp[i+(1<<j-1)][j-1]);
}
int query(int l,int r)
{
int k=(int)(log((double)(r-l+1))/log(2.0));
return max(dp[l][k],dp[r-(1<<k)+1][k]);
}
int main()
{
int n,k;
while(scanf("%d%d",&n,&k) && n>0 && k>0)
{
int v=-1;
bool flag=true;
for(int i=1;i<=n;i++)
{
scanf("%d",&arr[i]);
v=max(v,arr[i]);
}
init(n);
int m=(k-1)/v+1;
while(m<=n)
{
int sum=0,max=n/m;
for(int j=0;j<m;j++)
sum+=query(j*max+1,(j+1)*max);
if(sum>k)
break;
m++;
}
printf("%d\n",(m<=n?m:-1));
}
return 0;
}