HDU3486_Interviewe(ST算法)

        本题大意是给定一个数组,将其分割为长度相等的多个子区间,要求经分割后的各个子区间内的最大值之和大于目标值target,求最小子区间长度。

        分割后的子区间长度是固定的,若分割后有一些剩余,将剩余的直接舍掉。本题的解法是从1~n枚举每种子区间长度,利用ST算法(详解:ST算法)求出分割后各个小区间内的最大值之和,若大于了目标值则输出。

        有一种优化策略可以所短运行时间,设目标值为target,最小子区间长度为m,数组长度为n。先找出数组内的最大值v,然后假设分割出的所有子区间内的最大值都是v,那么m最小为:(k-1)/ v + 1。代码如下:

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=200005;
int arr[maxn],dp[maxn][15];
int max(int a,int b)
{
	return a>b?a:b;
}
void init(int n)
{
	for(int i=1;i<=n;i++)
		dp[i][0]=arr[i];
	for(int j=1;(1<<j)<=n;j++)
		for(int i=1;i+(1<<j)<=n+1;i++)
			dp[i][j]=max(dp[i][j-1],dp[i+(1<<j-1)][j-1]);
}

int query(int l,int r)
{
	int k=(int)(log((double)(r-l+1))/log(2.0));
	return max(dp[l][k],dp[r-(1<<k)+1][k]);
}

int main()
{
	int n,k;
	while(scanf("%d%d",&n,&k) && n>0 && k>0)
	{
		int v=-1;
		bool flag=true;
		for(int i=1;i<=n;i++)
		{
			scanf("%d",&arr[i]);
			v=max(v,arr[i]);
		}
		init(n);
		int m=(k-1)/v+1;
		while(m<=n)
		{
			int sum=0,max=n/m;
			for(int j=0;j<m;j++)
				sum+=query(j*max+1,(j+1)*max);
			if(sum>k)
				break;
			m++;
		}
		printf("%d\n",(m<=n?m:-1));
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值