HDU - 3486 Interviewe RMQ应用

题目链接:HDU3486
题意:给定一个 N N N个人的序列,按顺序切成 M M M组,每组 N / M N/M N/M个人,如果有多余的人则去掉(比如 14 14 14个人分成 4 4 4段,那么最后两个人是多余的,去掉),问:一个最小的 M M M,使得这 M M M组最大和严格大于 K K K
分析:本题有求区间最值问题,那么我们可以想到用线段树或者 S T ST ST表维护,但是本题不涉及区间的修改故用 S T ST ST表较合理,并且简单,而且时间复杂度小。求最小的 M M M,可能我们会想到二分,但是本题是不满足二分的单调性的,因为不一定 M M M越大,我们得到的 M M M组最大和越大,比如这组数据: N = 9 N = 9 N=9,元素为 [ 1 , 1 , 1000 , 2000 , 2 , 2 , 3000 , 4000 , 1 ] [1, 1, 1000, 2000, 2, 2, 3000, 4000, 1] [1,1,1000,2000,2,2,3000,4000,1], 当M = 3时, s u m 1 = 1000 + 2000 + 4000 = 7000 sum1 = 1000 + 2000 + 4000 = 7000 sum1=1000+2000+4000=7000, 当 M = 4 M = 4 M=4时, s u m 2 = 1 + 2000 + 2 + 4000 = 6003 , s u m 1 > s u m 2 sum2 = 1 + 2000 + 2 + 4000 = 6003, sum1 > sum2 sum2=1+2000+2+4000=6003,sum1>sum2, 所以只好暴力(优化)之。

#include <bits/stdc++.h>
using namespace std;

const int maxn = 200000 + 5;

int n, k, mx, sum, a[maxn], st[maxn][22];

void init(){
	for(int i = 1; i <= n; i++) st[i][0] = a[i];
	for(int j = 1; (1 << j) <= n; j++)
		for(int i = 1; i + (1 << j) - 1 <= n; i++)
			st[i][j] = max(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]);
}

int rmq(int l, int r){
	int k = (int)((double)log(r - l + 1) / log(2.0));
	return max(st[l][k], st[r - (1 << k) + 1][k]);
}

bool check(int o, int p){
	int l, r, res, num;
	l = 1, r = l + o - 1, num = res = 0;//[l, r]是每次查询的区间
	while(r <= n && num < p){//要用一个num记录已经查询了多少个区间了, 不然可能会查询到多余的区间。
		res += rmq(l, r);
		l += o, r += o, num++;
		if(res > k) return true;
	}
	return false;
}

int main(){ 
	while(~scanf("%d %d", &n, &k)){
		if(n == -1 && k == -1) break;
		sum = 0, mx = 1;
		for(int i = 1; i <= n; i++){
			scanf("%d", a + i);
			mx = max(mx, a[i]);
			sum += a[i];
		}
		if(sum <= k){
			puts("-1");
			continue;
		}
		init();
		for(int i = max(k / mx, 1); i <= n; i++){//暴力枚举组数不用从1开始,直接从(k/最大的元素)开始
			if(check(n / i, i)){
				printf("%d\n", i);
				break;
			}
		}
	}
    return 0;
}

T h a n k s . Thanks. Thanks.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值